ConcurrentHashMap的特性
- concurrentHashMap跟Hashtable具有相同的功能方法。可以看作是Hashtable的升级版,HashMap的线程安全版。
- 跟Hashtable相同,它的键或值不允许是null。
- ConcurrentHashMap和HashMap一样都是采用拉链法处理哈希冲突,且都为了防止单链表过长影响查询效率,所以当链表长度超过某一个值时候将用红黑树代替链表进行存储,采用了数组+链表+红黑树的结构
ConcurrentHashMap与Hashtable比较
- 线程安全的实现:Hashtable采用对象锁(synchronized修饰对象方法)来保证线程安全,也就是一个Hashtable对象只有一把锁,如果线程1拿了对象A的锁进行有synchronized修饰的put方法,其他线程是无法操作对象A中有synchronized修饰的方法的(如get方法、remove方法等),竞争激烈所以效率低下。而ConcurrentHashMap采用CAS + synchronized来保证并发安全性,且synchronized关键字不是用在方法上而是用在了具体的对象上,实现了更小粒度的锁。
- 数据结构的实现:Hashtable采用的是数组 + 链表,当链表过长会影响查询效率,而ConcurrentHashMap采用数组 + 链表 + 红黑树,当链表长度超过某一个值,则将链表转成红黑树,提高查询效率。
ConcurrentHashMap
我们先看一下ConcurrentHashMap
实现了哪些接口、继承了哪些类,对ConcurrentHashMap
有一个整体认知。
可以发现,ConcurrentHashMap
跟HashMap
一样继承AbstractMap
接口,
然后实现了ConcurrentMap
接口,这个和HashMap
不一样,HashMap
是直接实现的Map
接口。
部分关键参数
//node数组最大容量:2^30=1073741824
private static final int MAXIMUM_CAPACITY = 1 << 30;
//默认初始表容量。必须是 2 的幂(即至少为 1)且最多为 MAXIMUM_CAPACITY
private static final int DEFAULT_CAPACITY = 16;
//最大可能(非二的幂)数组大小。 toArray 和相关方法需要
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
//负载因子
private static final float LOAD_FACTOR = 0.75f;
// 链表转红黑树阀值,> 8 链表转换为红黑树
static final int TREEIFY_THRESHOLD = 8;
//树转链表阀值,小于等于6(tranfer时,lc、hc=0两个计数器分别++记录原bin、新binTreeNode数量,<=UNTREEIFY_THRESHOLD 则untreeify(lo))
static final int UNTREEIFY_THRESHOLD = 6;
//存放node的数组
transient volatile Node<K,V>[] table;
/*控制标识符,用来控制table的初始化和扩容的操作,不同的值有不同的含义
*当为负数时:-1 代表正在初始化,-N 代表有N-1 个线程正在 进行扩容
*当为 0 时:代表当时的table还没有被初始化
*当为正数时:表示初始化或者下一次进行扩容的大小
*/
private transient volatile int sizeCtl;
几个重要的成员变量table、nextTable、baseCount、sizeCtl、transferIndex、cellsBusy
- table:数据类型是Node数组,这里的Node和HashMap的Node一样都是内部类且实现了Map.Entry接口
- nextTable:哈希表扩容时生成的数据,数组为扩容前的2倍
- sizeCtl:多个线程的共享变量,是操作的控制标识符,它的作用不仅包括threshold的作用,在不同的地方有不同的值也有不同的用途。
- -1代表正在初始化
- -N代表有N-1个线程正在进行扩容操作
- 0代表hash表还没有被初始化
- 正数表示下一次进行扩容的容量大小
- ForwardingNode:一个特殊的Node节点,Hash地址为-1,存储着nextTable的引用,只有table发生扩用的时候,ForwardingNode才会发挥作用,作为一个占位符放在table中表示当前节点为null或者已被移动
ConcurrentHashMap 针对 ForwardingNode、ReservationNode,以及树根结点都定义了特定的哈希值:
/*
* 节点哈希字段的编码. See above for explanation.
*/
/** ForwardingNode 结点的 hash 值 */
static final int MOVED = -1; // hash for forwarding nodes 转发节点的哈希
static final int TREEBIN = -2; // hash for roots of trees 树根的哈希
static final int RESERVED = -3; // hash for transient reservations 临时预订的哈希
static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
构造方法
它的构造方法一共有5个,从数量上看就和HashMap、Hashtable(4个)的不同,多出的那个构造函数是public ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel),即除了传入容量大小、负载因子之外还多传入了一个整型的concurrencyLevel,这个整型是我们预先估计的并发量,比如我们估计并发是30,那么就可以传入30。
其他的4个构造函数的参数和HashMap的一样,而具体的初始化过程却又不相同,HashMap和Hashtable传入的容量大小和负载因子都是为了计算出初始阈值(threshold),而ConcurrentHashMap传入的容量大小和负载因子是为了计算出sizeCtl用于初始化table,这个sizeCtl即table数组的大小,不同的构造函数计算sizeCtl方法都不一样。
//1. 无参构造函数,什么也不做,此时sizeCtl参数为
//table的初始化放在了第一次插入数据时,默认容量大小是16。
//使用默认初始表大小 (16) 创建一个新的空映射
public ConcurrentHashMap() {
}
//2. 传入容量大小的构造方法
public ConcurrentHashMap(int initialCapacity) {
if (initialCapacity < 0)
throw new IllegalArgumentException();
//如果传入的容量大小大于允许的最大容量值 则cap取允许的容量最大值 否则cap =
//((传入的容量大小 + 传入的容量大小无符号右移1位 + 1)的结果向上取最近的2幂次方),
//即如果传入的容量大小是12 则 cap = 32
//(12 >>> 1)=1100>>>1=0110=7
//=(12 + (12 >>> 1) + 1=19 并向上取2的幂次方即32)
//,这里为啥一定要是2的幂次方,原因和HashMap的threshold一样,
//都是为了让位运算和取模运算的结果一样。
//MAXIMUM_CAPACITY即允许的最大容量值 为2^30。
int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
MAXIMUM_CAPACITY :
tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
//将上面计算出的cap 赋值给sizeCtl,注意此时sizeCtl为正数,代表进行扩容的容量大小。
this.sizeCtl = cap;
}
//3.创建一个与给定Map具有相同映射Map
public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
//置sizeCtl为默认容量大小 即16。
this.sizeCtl = DEFAULT_CAPACITY;
putAll(m);
}
//4.传入容量大小和负载因子的构造方法
//默认并发数大小是1。
public ConcurrentHashMap(int initialCapacity, float loadFactor) {
this(initialCapacity, loadFactor, 1);
}
//5. 传入容量大小、负载因子和并发数大小的构造方法
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
//如果负载因子>0,传入容量大小<0,并发数大小<=0一项不符合就
//直接抛出IllegalArgumentException非法参数异常
if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
//如果传入的容量大小小于并发数大小,咱们就把初始容量变成更大的并发数。这样做的原因是确保每一个Node只会分配给一个线程
if (initialCapacity < concurrencyLevel) //
initialCapacity = concurrencyLevel; //
/**
下面就时计算sizeCtl的值了,用于下一次扩容的时候就是初始化的时候。
*/
long size = (long)(1.0 + (long)initialCapacity / loadFactor);
//如果size比允许的最大容量值还大,那直接sizeCtl= 允许的最大容量值。
// 否则对size进行tableSizeFor操作就是 size向上取2的幂次方
//比如 size = 6 tableSizeFor((int)size)=9
// size = 9 tableSizeFor((int)size)=16
// size = 12 tableSizeFor((int)size)=32
int cap = (size >= (long)MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY : tableSizeFor((int)size)=9;
this.sizeCtl = cap; //计算好之后便赋值给sizeCtl
}
构造方法简单总结:
都是为了算出sizeCtl值,也就是初始化table数组大小。
一共有5个构造方法。
- 无参构造函数,什么也不做,此时sizeCtl参数为0,初始化操作在put操作中实现
- 传入容量大小的构造方法,对参数校验后(>0),传入的容量大小大于MAXIMUM_CAPACITY即允许的最大容量 2^30, 则cap取允许的容量最大值。比他小咱们就做tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1))操作,对initialCapacity + (initialCapacity >>> 1) + 1 向上取最近的2的幂次方,最后将值给sizeCtl。
- 创建一个与给定Map具有相同映射Map。
- 传入容量大小和负载因子的构造方法,它调用第5个方法,并发数大小=1。
- 传入容量大小、负载因子和预期并发数大小的构造方法。具体看上面。
put操作
put
public V put(K key, V value) {
return putVal(key, value, false);//调用了putVal方法
}
putVal
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
//如果有一个为null,那么直接报错。所以可以得出concurrentHashMap中Key,value不能为空。
int hash = spread(key.hashCode());//计算key的hash值,参与插入位置的计算
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
//循环尝试,for循环内它是if..。else if...else格式
Node<K,V> f; int n, i, fh;
//如果table数组为null,说明还没有table数组呢,那咱们就开始初始化数组。
if (tab == null || (n = tab.length) == 0)
//初始化之后,会直接进行下次循环。
tab = initTable();
如果i位置没有数据(即该下标上的链表为空),就直接CAS无锁插入
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
/* 获取对应位置Node节点(链表头节点)(Volatile的),casTabAt方法CAS无锁的添加到
空箱, 如果插入成功了则跳出for循环,插入失败(其他线程抢先插入了),
那么继续下次循环。*/
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break;
}
//如果该下标上的节点的哈希地址为-1(即链表的头节点为ForwardingNode节点),则表示
//table正在进行扩容(transfer),那咱们先等着吧。
//注意的::ConcurrentHashMap初始化和扩容不是用同一个方法,而
//HashMap和Hashtable都是用同一个方法,并且当前线程会去协助扩容,扩容过程后面介绍。
else if ((fh = f.hash) == MOVED)//-1
tab = helpTransfer(tab, f);//返回扩容完成后的table。
//上面情况都没有,那么我们就将进入到链表中,将新节点插入或者覆盖旧值。
else {
V oldVal = null;
// only针对首个节点进行加锁操作,一次锁的资源小了,减少了锁的粒度。也正是因为
// 这个提高了ConcurrentHashMap的效率,提高了并发度。
synchronized (f) {
if (tabAt(tab, i) == f) { //做一次校验看看头节点一样不
if (fh >= 0) {//哦~不知道fh怎么来的?看26行。节点的哈希地址大于
//等于0,则表示这是个链表
binCount = 1;
//遍历链表,大家应该非常熟悉了吧。
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
//如果发现有key一样的,那咱们就把value值替换掉。
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;//结束推出链表循环
}
// 如果没有找到值为key的节点,直接新建Node并加入链表尾部即可。
Node<K,V> pred = e;
if ((e = e.next) == null) {//到链表尾部了。
//将节点插入链表尾部
pred.next = new Node<K,V>(hash, key,
value, null);
break;//结束推出链表循环
}
}
}
else if (f instanceof TreeBin) {//如果首节点为TreeBin类型,
// 说明为红黑树结构,执行putTreeVal操作
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
//这时候同步代码块已经结束,元素插入完毕,释放了锁。
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)//如果链表的长度大于树形阈值 8 时
//就会进行红黑树的转换
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;//如果key对应的以前有值,那么返回oldVal
break;
}
}
}
addCount(1L, binCount);//统计size,可能会扩容transfer操作。
return null;
}
总结一下put流程:
- 校验Key,value是否为空。如果有一个为null,那么直接报NullPointerException异常。所以可以得出concurrentHashMap中Key,value不能为空。
- 循环尝试插入。进入循环。
- case1:如果没有初始化就先调用initTable()方法来进行初始化过程
- case2:根据Hash值计算插入位置(n - 1) & hash=i。如果没有hash冲突,也就是说插入位置上面没有数据,就直接casTabAt()方法将数据插入。
- case3:插入位置上有数据。数据的头节点的哈希地址为-1(即链表的头节点为ForwardingNode节点),则表示其他线程正在对table进行扩容(transfer),就先等着,等其他线程扩容完了咱们再尝试插入。
- case4:上面情况都没有。就对首节点加synchronized锁来保证线程安全,两种情况,一种是链表形式就直接遍历到尾端插入,一种是红黑树就按照红黑树结构插入,结束加锁。
- 如果Hash冲突时会形成Node链表,在链表长度超过8,Node数组超过64 时会将链表结构转换为红黑树的结构。
- break退出循环。
- 调用addCount()方法统计Map已存储的键值对数量size++,检查是否需要扩容,需要扩容就扩容。
了解了它的基本流程之后,我们来看其中的一些调用方法。
initTable 初始化数组
tabAt 获取对应位置Node节点
casTabAt CAS添加节点
helpTransfer 帮助扩容,如果线程进入到这边说明已经有其他线程正在做扩容操作,这个是一个辅助方法
transfer 扩容操作(重点)
addCount ConcurrentHashMap的键值对数量size+1,并判断是否需要扩容
initTable
第一次进入putVal循环发现table数组是null的时候调用。
initTable()方法初始化一个合适大小的table数组,然后设置sizeCtl值(下一次扩容阈值=数组长度*0.75)。
我们知道ConcurrentHashMap是线程安全的,即支持多线程的,那么一开始很多个线程同时执行put()方法,而table又没初始化,那么就会很多个线程会去执行initTable()方法尝试初始化table,而put方法和initTable方法都是没有加锁的(synchronize),那怎么保证线程安全的呢?
/**
* 初始化表table数组 大小为sizeCtl值。
*/
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
//先看看table是否被初始化,如果已经初始化了,结束while循环
//如果table为null那么一直while循环尝试初始化,直到完成
while ((tab = table) == null || tab.length == 0) {\
if ((sc = sizeCtl) < 0) // sizeCtl< 0说明,其他线程抢先的正在初始化或者扩容,
Thread.yield(); // 初始化竞争失败;让出cpu,等着就完了。运行态转成就绪态
//sizeCtl >= 0
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { //Unsafed.compareAndSwapInt以CAS操作CASsizeCtl=-1,表示初始化状态。
try {
if ((tab = table) == null || tab.length == 0) {//再次确认当前table为null即还未初始化,这个判断不能少。
//如果sc(sizeCtl)大于0,则n=sc,否则n=默认的容量大
小16,
//这里的sc=sizeCtl=0,即如果在构造函数没有指定容量
大小,
//否则使用了有参数的构造函数,sc=sizeCtl=指定的容量大小。
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; //new Node数组(table)
table = tab = nt;
sc = n - (n >>> 2); //计算阈值,n - (n >>> 2) = 0.75*n,大于这个阈值,就会发生扩容。
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
initTable()初始化方法总结
initTable()用于里面table数组的初始化,值得一提的是table初始化是没有加锁的,那么如何处理并发呢?
由上面代码可以看到,当要初始化时会通过CAS操作将sizeCtl置为-1,而sizeCtl由volatile修饰,保证修改对后面线程可见。
这之后如果再有线程执行到此方法时检测到sizeCtl为负数,说明已经有线程在给扩容了,这个线程就会调用Thread.yield()让出一次CPU执行时间。
initTable流程总结:
-
如果table==null,进入循环。
-
case1: sizeCtl< 0 说明其他线程抢先对table初始化或者扩容,就调用Thread.yield(); 让出一次cpu,等下次抢到cpu再循环判断。
-
case2: 以CAS操作CASsizeCtl=-1,表示当前线程正在初始化。下面就开始初始化。
-
判断sizeCtl的值。 sc(sizeCtl)大于0,则 容量大小=sc,
-
sc(sizeCtl)<=0,即如果在使用了有参数的构造函数,sc=sizeCtl=指定的容量大小,否则n=默认的容量大小16。
-
用上面求出的容量大小new出table数组。
-
计算阈值,sizeCtl = n - (n >>> 2) = 0.75*n。
tabAt AND casTabAt
@SuppressWarnings("unchecked")
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
}
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
Node<K,V> c, Node<K,V> v) {
return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
}
helpTransfer 和 transfer
/**
* Helps transfer if a resize is in progress.
*/
//协助扩容方法
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
Node<K,V>[] nextTab; int sc;
//如果当前table不为null 且 f为ForwardingNode节点 且新的table即nextTable存在的情况下才能协助扩容,该方法的作用是让线程参与扩容的复制。
if (tab != null && (f instanceof ForwardingNode) &&
(nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
int rs = resizeStamp(tab.length);
while (nextTab == nextTable && table == tab &&
(sc = sizeCtl) < 0) { //如果小于0说明已经有线程在进行扩容操作了
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) { //更新sizeCtl的值,+1,代表新增一个线程参与扩容
transfer(tab, nextTab);
break;
}
}
return nextTab;
}
return table;
}
transfer()方法为ConcurrentHashMap扩容操作的核心方法。JDK1.8中,ConcurrentHashMap最复杂的部分就是扩容/数据迁移,涉及多线程的合作和rehash。我们先来考虑下一般情况下,如何对一个Hash表进行扩容。
Hash表的扩容,一般都包含两个步骤:
①table数组的扩容
table数组的扩容,一般就是新建一个2倍大小的槽数组,这个过程通过由一个单线程完成,且不允许出现并发。
②数据迁移
所谓数据迁移,就是把旧table中的各个槽中的结点重新分配到新table中*。
这一过程通常涉及到槽中key的rehash(重新Hash),因为key映射到桶的位置与table的大小有关,新table的大小变了,key映射的位置一般也会变化。
ConcurrentHashMap在处理rehash的时候,并不会重新计算每个key的hash值,而是利用了一种很巧妙的方法。我们在上一篇说过,ConcurrentHashMap内部的table数组的大小必须为2的幂次,原因是让key均匀分布,减少冲突,这只是其中一个原因。另一个原因就是:
当table数组的大小为2的幂次时,通过
key.hash & table.length-1
这种方式计算出的索引i
,当table扩容后(2倍),新的索引要么在原来的位置i
,要么是i+n
。
而且还有一个特点,扩容后key对应的索引如果发生了变化,那么其变化后的索引最高位一定是1
什么时候会扩容?
当往hashMap中成功插入一个key/value节点时,有两种情况可能触发扩容动作:
1、如果新增节点之后,所在链表的元素个数达到了阈值 8,则会调用treeifyBin方法把链表转换成红黑树,不过在结构转换之前,会对数组长度进行判断,实现如下:如果数组长度n小于阈值MIN_TREEIFY_CAPACITY,默认是64,则会调用tryPresize方法把数组长度扩大到原来的两倍,并触发transfer方法,重新调整节点的位置。
2、调用put方法新增节点时,在结尾会调用addCount方法记录元素个数,并检查是否需要进行扩容,当数组元素个数达到阈值时,会触发transfer方法,重新调整节点的位置。
扩容状态下其他线程对集合进行插入、修改、删除、合并、compute 等操作时遇到 ForwardingNode 节点会触发扩容 。
putAll 批量插入或者插入节点后发现存在链表长度达到 8 个或以上,但数组长度为 64 以下时会触发扩容 。
注意:桶上链表长度达到 8 个或者以上,并且数组长度为 64 以下时只会触发扩容而不会将链表转为红黑树 。
扩容原理
/**
* 数据转移和扩容.
* 每个调用tranfer的线程会对当前旧table中[transferIndex-stride, transferIndex-1]位置的结点进行迁移
*
* @param tab 旧table数组
* @param nextTab 新table数组
*/
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
//根据服务器CPU数量来决定每个线程负责的bucket桶数量,避免因为扩容的线程过多反而影响性能。
//如果CPU数量为1,则stride=1,否则将需要迁移的bucket数量(table大小)除以CPU数量,平分给
//各个线程,但是如果每个线程负责的bucket数量小于限制的最小是(16)的话,则强制给每个线程
//分配16个bucket数。
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
//如果nextTable还未初始化,则初始化nextTable,这个初始化和iniTable初始化一样,只能由
//一个线程完成。
if (nextTab == null) { // nextTab为null,那么就初始化它
try {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
transferIndex = n; //[transferIndex-stride, transferIndex-1]表示当前线程要进行数据迁移的桶区间
}
int nextn = nextTab.length;
// ForwardingNode结点,当旧table的某个桶中的所有结点都迁移完后,用该结点占据这个桶
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
// 标识一个桶的迁移工作是否完成,advance == true 表示可以进行下一个位置的迁移
boolean advance = true;
//循环的关键变量,最后一个数据迁移的线程将该值置为true,并进行本轮扩容的收尾工作
boolean finishing = false;
//下个循环是分配任务和控制当前线程的任务进度,这部分是transfer()的核心逻辑,描述了如何与其他线程协同工作。
for (int i = 0, bound = 0;;) { //进入循环
Node<K,V> f; int fh;
while (advance) {
int nextIndex, nextBound;
if (--i >= bound || finishing)
advance = false;
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
//i<0说明已经遍历完旧的数组tab;i>=n什么时候有可能呢?在下面看到i=n,所以目前i最大应该是n吧。
//i+n>=nextn,nextn=nextTab.length,所以如果满足i+n>=nextn说明已经扩容完成
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
if (finishing) {
nextTable = null;
table = nextTab;
sizeCtl = (n << 1) - (n >>> 1);
return;
}
//利用CAS方法更新这个扩容阈值,在这里面sizectl值减一,说明新加入一个线程参与到扩容操作,参考sizeCtl的注释
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;//finishing和advance保证线程已经扩容完成了可以退出循环
i = n; //先退出,重新检查遍
}
}
else if ((f = tabAt(tab, i)) == null)//如果tab[i]为null,那么就把fwd插入到tab[i],表明这个节点已经处理过了
advance = casTabAt(tab, i, null, fwd);
else if ((fh = f.hash) == MOVED)//那么如果f.hash=-1的话说明该节点为ForwardingNode,说明该节点已经处理过了
advance = true; // already processed
//迁移过程(对当前指向的bucket),这部分的逻辑与HashMap类似,拿旧数组的容量当做一
//个掩码,然后与节点的hash进行与&操作,可以得出该节点的新增有效位,如果新增有效位为
//0就放入一个链表A,如果为1就放入另一个链表B,链表A在新数组中的位置不变(跟在旧数
//组的索引一致),链表B在新数组中的位置为原索引加上旧数组容量。
else {
synchronized (f) {
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
if (fh >= 0) {// 桶的hash>=0,说明是链表迁移
/**
* 下面的过程会将旧桶中的链表分成两部分:ln链和hn链
* ln链会插入到新table的槽i中,hn链会插入到新table的槽i+n中
*/
int runBit = fh & n;
Node<K,V> lastRun = f;
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
//
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);//把已经替换的节点的旧tab的i的位置用fwd结点替换,fwd包含nextTab
advance = true;
}
//不是链表,那就是红黑树。下面红黑树基本和链表差不多
else if (f instanceof TreeBin) {
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
//判断扩容后是否还需要红黑树结构
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t;
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd); // 设置ForwardingNode占位
advance = true; // 表示当前旧桶的结点已迁移完毕
}
}
}
}
}
}
tranfer方法的开头,会计算出一个stride
变量的值,这个stride其实就是每个线程处理的桶区间,也就是步长:
// stride可理解成“步长”,即数据迁移时,每个线程要负责旧table中的多少个桶
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE;
首次扩容时,会将table数组变成原来的2倍。
注意上面的transferIndex
变量,这是一个字段,table[transferIndex-stride, transferIndex-1]
就是当前线程要进行数据迁移的桶区间:
/**
* 扩容时需要用到的一个下标变量.
*/
private transient volatile int transferIndex;
整个transfer方法几乎都在一个自旋操作中完成,从右往左开始进行数据迁移,transfer的退出点是当某个线程处理完最后的table区段——table[0,stride-1]
。
transfer方法主要包含4个分支,即对4种不同情况进行处理:
首先根据运算得到需要遍历的次数i,然后利用tabAt方法获得i位置的元素:
- 如果这个位置为空,就在原table中的i位置放入forwardNode节点,这个也是触发并发扩容的关键点;
- 如果这个位置是Node节点(fh>=0),如果它是一个链表的头节点,就构造一个反序链表,把他们分别放在nextTable的i和i+n的位置上
- 如果这个位置是TreeBin节点(fh<0),也做一个反序处理,并且判断是否需要untreefi,把处理的结果分别放在nextTable的i和i+n的位置上
- 遍历过所有的节点以后就完成了复制工作,这时让nextTable作为新的table,并且更新sizeCtl为新容量的0.75倍,完成扩容。
多线程遍历节点,处理了一个节点,就把对应点的值set为forward,另一个线程看到forward,就向后继续遍历,再加上给节点上锁的机制,就完成了多线程的控制。这样交叉就完成了复制工作。而且还很好的解决了线程安全的问题。
总结一下扩容条件:
(1) 元素个数达到扩容阈值。
(2) 调用 putAll 方法,但目前容量不足以存放所有元素时。
(3) 某条链表长度达到8,但数组长度却小于64时。
CPU核数与迁移任务hash桶数量分配(步长)的关系
单线程下线程的任务分配与迁移操作
多线程如何分配任务?
get操作
get方法无疑是在HahsMap还是在ConcurrentHashMap中最好理解的方法了。
返回指定键映射到的值,如果此映射不包含该键的映射,则返回null 。
和HashMap一样用equals
来判断是否相等,也就是说必须Hash索引和equals一样,才算相同。
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
int h = spread(key.hashCode());//运用key的hashCode()计算出哈希地址
//table不为空 且 table长度大于0 且 计算出的下标上用tabAt CAS取值不为空,也就是这个位置上有人,那么就进去找。
if ((tab = table) != null && (n = tab.length) > 0 && (e = tabAt(tab, (n - 1) & h)) != null) {
//如果哈希地址、键key相同则表示查找到,返回value,这里查找到的是头节点,就不用往下找了。
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
//eh=-2ash值<0 可能是Tree树形,可能e节点为ForwardingNode结点。
//如果eh=-1就说明e节点为ForwardingNode,这说明什么,说明这个节点已经不存在了,被另一个线程正则扩容所以要查找key对应的值的话,直接到新newtable找
//如果是eh=-2 说明e节点为Tree根结点,那么后面就以红黑树的方式查找。
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;//eh=-1这里调用的find其实就是ForwardingNode中的find方法了。
//排除完上面情况,咱就正常找
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
总结流程:
- 调用spread()方法计算key的hashCode()获得哈希地址。
- 计算出键key所在的下标,算法是(n - 1) & h,如果table不为空,且下标上的bucket不为空,则到bucket中查找。
- 如果bucket的头节点的哈希地址小于0,有可能e结点是树的根节点,那么就按照红黑树的方式查找。还有可能说明e节点可能为ForwardingNode,这说明什么,说明这个节点已经不存在了,被另一个线程正则扩容所以要查找key对应的值的话,直接到新newtable找。
- 找到则返回该键key的值,找不到则返回null。
这里有个疑问,问什么put的时候加锁了,get读的时候不加锁
这要归功于使用的tabAt中的了Unsafe的getObjectVolatile,因为table是volatile类型,所以对tab[i]的原子请求也是可见的。因为如果同步正确的情况下,根据happens-before原则,对volatile域的写入操作happens-before于每一个后续对同一域的读操作。所以不管其他线程对table链表或树的修改,都对get读取可见。
总结与思考
其实可以看出JDK1.8版本的ConcurrentHashMap的数据结构已经接近HashMap,相对而言,ConcurrentHashMap只是增加了同步的操作来控制并发,从JDK1.7版本的ReentrantLock+Segment+HashEntry,到JDK1.8版本中synchronized+CAS+HashEntry+红黑树,相对而言,总结如下思考
- JDK1.8的实现降低锁的粒度,JDK1.7版本锁的粒度是基于Segment的,包含多个HashEntry,而JDK1.8锁的粒度就是HashEntry(首节点)
- JDK1.8版本的数据结构变得更加简单,使得操作也更加清晰流畅,因为已经使用synchronized来进行同步,所以不需要分段锁的概念,也就不需要Segment这种数据结构了,由于粒度的降低,实现的复杂度也增加了
- JDK1.8使用红黑树来优化链表,基于长度很长的链表的遍历是一个很漫长的过程,而红黑树的遍历效率是很快的,代替一定阈值的链表,这样形成一个最佳拍档
还有以下几个可能遇到的问题,进行回答:
1.扩容期间在未迁移到的hash桶插入数据会发生什么?
答:只要插入的位置扩容线程还未迁移到,就可以插入,当迁移到该插入的位置时,就会阻塞等待插入操作完成再继续迁移 。
2.正在迁移的hash桶遇到 get 操作会发生什么?
答:在扩容过程期间形成的 hn 和 ln链 是使用的类似于复制引用的方式,也就是说 ln 和 hn 链是复制出来的,而非原来的链表迁移过去的,所以原来 hash 桶上的链表并没有受到影响,因此如果当前节点有数据,还没迁移完成,此时不影响读,能够正常进行。如果当前链表已经迁移完成,那么头节点会被设置成fwd节点,此时get线程会帮助扩容。
3.正在迁移的hash桶遇到 put/remove 操作会发生什么?
如果当前链表已经迁移完成,那么头节点会被设置成fwd节点,此时写线程会帮助扩容,如果扩容没有完成,当前链表的头节点会被锁住,所以写线程会被阻塞,直到扩容完成。
4.并发情况下,各线程中的数据可能不是最新的,那为什么 get 方法不需要加锁?
答:get操作全程不需要加锁是因为Node的成员val是用volatile修饰的,在多线程环境下线程A修改结点的val或者新增节点的时候是对线程B可见的。