D - The Beatles CodeForces - 1143D

D - The Beatles CodeForces - 1143D

Recently a Golden Circle of Beetlovers was found in Byteland. It is a circle route going through n⋅k cities. The cities are numerated from 1 to n⋅k, the distance between the neighboring cities is exactly 1 km.

Sergey does not like beetles, he loves burgers. Fortunately for him, there are n fast food restaurants on the circle, they are located in the 1-st, the (k+1)-st, the (2k+1)-st, and so on, the ((n−1)k+1)-st cities, i.e. the distance between the neighboring cities with fast food restaurants is k km.

Sergey began his journey at some city s and traveled along the circle, making stops at cities each l km (l>0), until he stopped in s once again. Sergey then forgot numbers s and l, but he remembers that the distance from the city s to the nearest fast food restaurant was a km, and the distance from the city he stopped at after traveling the first l km from s to the nearest fast food restaurant was b km. Sergey always traveled in the same direction along the circle, but when he calculated distances to the restaurants, he considered both directions.

Now Sergey is interested in two integers. The first integer x is the minimum number of stops (excluding the first) Sergey could have done before returning to s. The second integer y is the maximum number of stops (excluding the first) Sergey could have done before returning to s.
Input
The first line contains two integers n and k (1≤n,k≤100000) — the number of fast food restaurants on the circle and the distance between the neighboring restaurants, respectively.

The second line contains two integers a and b (0≤a,b≤k2) — the distances to the nearest fast food restaurants from the initial city and from the city Sergey made the first stop at, respectively.

Output
Print the two integers x and y.

Examples
Input
2 3
1 1
Output
1 6
Input
3 2
0 0
Output
1 3
Input
1 10
5 3
Output
5 5
Note
In the first example the restaurants are located in the cities 1 and 4, the initial city s could be 2, 3, 5, or 6. The next city Sergey stopped at could also be at cities 2,3,5,6. Let’s loop through all possible combinations of these cities. If both s and the city of the first stop are at the city 2 (for example, l=6), then Sergey is at s after the first stop already, so x=1. In other pairs Sergey needs 1,2,3, or 6 stops to return to s, so y=6.

In the second example Sergey was at cities with fast food restaurant both initially and after the first stop, so l is 2, 4, or 6. Thus x=1, y=3.

In the third example there is only one restaurant, so the possible locations of s and the first stop are: (6,8) and (6,4). For the first option l=2, for the second l=8. In both cases Sergey needs x=y=5 stops to go to s.
思路:读懂英语,分类讨论,公式n=c/gcd(l,c)
注意:1.l可能0,注意gcd中l在前
2.宏,不可递归
3.l可能b-a,为负数,先弄正来
4.%lld

#include<stdio.h>
#define ll long long
ll gcd(ll c,ll l) {
	return c%l?gcd(l,c%l):l;
}
ll min,max,n,k,a,b,c;
void putl(ll a1,ll b1){
	ll l=b1-a1;
	if(l<0){
		l=-l;
	}
	ll time;
	for(int i=0;i<n;i++,l+=k){
		time=c/gcd(l,c);
		if(time>max){
			max=time;
		}
		if(time<min){
			min=time;
		}
	}
}
void getl(void){
	putl(a,b);
	putl(-a,b);
}
int main(){
	scanf("%lld%lld%lld%lld",&n,&k,&a,&b);
	min=c=n*k;
	max=0;
	getl();
	printf("%lld %lld\n",min,max);
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值