离散数学
文章平均质量分 66
Metallic Cat
这个作者很懒,什么都没留下…
展开
-
离散数学 --- 特殊图 --- 偶图与平面图
(V1中的K个结点至少与V2中的K个结点相邻的意思是 --- 选取v1中的K个结点,求取与这些结点具有边关系的V2中的结点总数,判断总数是否大于等于K)1.t条件判定就是在判断v1集合中的结点中的最小度数是否等于v2集合中的结点中的最大度数,若相等的话,则说明满足t条件,图中存在匹配。1.注意这里的关键词是能够!2.那个是v1,那个是v2则是通过给定的图的数学表达式来判断的,表达式尖框中的左边是v1,右边是v2。1.K5(5个结点,上面右边那张图就是K5)和K3.3(6个结点,上下各三个)是两个图的命名。原创 2022-09-11 23:27:45 · 3063 阅读 · 0 评论 -
离散数学 --- 特殊图 --- 欧拉图,哈密顿图
1.证明思路:哈密顿图是原图的生成子图(点集相同,但是边集是子集),在生成子图中删去和原图中一样的结点时,由于子图的边集 ≤ 原图边集 , 所以我们在子图中得到的连通分支数 ≥ 原图。割点的定义是:在原图中删去这个点后图中就会出现两个或两个以上的连通分支,根据定义我们可知,当删去割点时原图必不满足哈密顿图的充分条件,所以有割点的图一定不是哈密顿图。所以我们只需要证明在哈密顿图(生成子图)中删除结点后得到的连通分支数 ≤ 删去的点数,就能够传递证明原图删除相同结点后得到的连通分支数 ≤ 删去的点数。原创 2022-09-11 13:02:21 · 6345 阅读 · 0 评论 -
离散数学 --- 根树,根数的遍历,最优树和哈夫曼算法
2.当读取到一个运算符的时候就将在这个运算符前面的两个数中的左边那个数作为运算符的左值,右边那个数作为运算符的右值进行计算,然后将计算完后的值入栈,同时将出栈元素中我们没有用到的那个元素跟在后面入栈入栈,接着再继续出栈和计算。1.我们一般认为叶子的权是叶的被访问频率,叶子的访问路径是对应的树的层数,访问频率乘以访问路径长度我们得到的是这个叶子的访问路径长度在总路径中占的实际份量,如果访问速度一样,加权后的实际访问路径越大,访问时间越长。1.关于根树的遍历我们常用的是先根遍历和后根遍历,中根遍历比较少用。原创 2022-09-10 10:53:55 · 3159 阅读 · 0 评论 -
离散数学 --- 树 --- 无向树,生成树与最小生成树
1.一个连通图中必定有至少一个生成树,这个生成树是连通图的生成子图(点集和原图的点集一样,边集是原图边集的子集) --- 也就是说,从图中的任意一个结点出发,以这个结点原有的边为基础连接与它邻接的点,然后再通过这些邻接的点继续连接与它们邻接的点 --- 最终我们一定能够得到一个符合要求的生成树(已经被连接过的点就打上标记,避免重复连接形成回路)而图是树的前提是图是连通图,所以非连通图的生成子图必不是连通图,连通图的生成子图可能是连通图。1.如果一个图非连通图的话,它的边集中的边必定缺少某两个结点之间的边。原创 2022-09-09 16:42:35 · 6182 阅读 · 0 评论 -
离散数学 --- 图论基础 --- 无向图的连通性和有向图的连通性
1.等价类:R是集合上的一个等价关系,选定集合中的任意一个元素a,所有于a满足等价关系R的元素组成的集合就是等价类 --- [a]R ---- 等价类的其它性质如果需要的话可以自己去查。接下来我们要研究的是删除图中的结点 或 边 对图的影响(要注意的是当我们删除结点的时候还需要将与结点相关联的边给删除掉)4.如果一个结点与其邻接点(和结点具有邻接关系的其它结点)之间无法构成回路的话,这个结点导出的子图也是一个强连通分支。2.图中最大的回路是一个强连通分支(所谓最大的回路就是只要再加一个结点就不是回路)原创 2022-09-08 12:14:13 · 5821 阅读 · 1 评论 -
离散数学 --- 图论基础 --- 图的同构,通路与回路,可达性与最短通路
同一个图(这里的图是抽象的数学定义)可以有不同的图形表示方法1.重数:两点之间的平行边的个数1.得到 n!的过程,一个图中的一个结点在另一个图中对应的结点有n种可能(黄框中定义的图来讨论),这个对应好后下一个结点有 n - 1 种可能,再下一个有n-2种,直到最后一个为1,所有可能的结果就等于 n * (n - 1) *(n - 2)*....*1 = n!2.虽然说找对应结点很困难,但不是没有规律可循的。比如1.两个相互对应的结点的度数要相同;原创 2022-09-08 09:09:17 · 6862 阅读 · 0 评论 -
离散数学 --- 图论基础 --- 子图和补图,握手定理
1.一个图的补图的点集合和原图一样,且边集合与原图的边集合并起来后等价于以原图的点集合为基础得到的完全图的边集合,也就是说完全图的边集合 - 原图的边集合 = 原图的补图的边集合(三个图的点集合都一样)2.导出子图:点集合是原图点集合的非空子集V,然后再在原图的边集合中找到两个端点均在点集合V中的边元素,并将这些边元素称成一个新的边集合,得到的这个边集合就是导出子图的边集合。偶数 * 偶数 = 偶数;(点集合V和得到的新的边集合组成的新图是原图G的子图,被称为V导出的原图的子图,简称为V的导出子图)原创 2022-09-07 21:50:24 · 17474 阅读 · 4 评论 -
离散数学 ---- 图论基础 --- 图的引入,表示与分类
1.同一个图可以有不同的邻接矩阵来描述,但是由于这些不同的邻接矩阵描述的都是同一个图,所以我们忽视掉这些邻接矩阵的不同,取其中一个邻接矩阵来代表这个图剩下的所有邻接矩阵。其中边分为两种,一种是有序表(有方向的边),一种是无序边(没有方向的边),对于有序边,我们可以用笛卡尔积和序偶来表示,而对于无序边我们则定义了无序对和无序积来表示。1.注意在有向图中的平行边的定义是:两结点间同起点,同终点,也就是说有向图中的平行边是分方向的,两个结点间同方向上的多条边才能称为平行边。2.表示事物之间联系的一些线的集合。原创 2022-09-07 16:28:03 · 1120 阅读 · 0 评论 -
离散数学 --- 函数 --- 函数的定义,类型与运算
1.注意 f 和 f(x) 是不一样的!--- f 是一个二元关系,是一个序偶集合,而 f(x) 是一个值 ,是一个随着x变化而变化的变量2.一个函数的定义域里的 一个x 值只能够对应值域里的一个 y 值,而值域里的一个 y 值能够对应定义域里的多个 x 值1.A是定义域,B是值域(定义域里的值称为原像,值域里的值称为像)2.定义域中的每一个原像能且只能在值域中找到一个像与其对应(不同原像对应的像可以相同)1.B的A次幂1.函数的基数就是作为函数定义域的集合中的元素个数。原创 2022-09-07 11:29:58 · 5848 阅读 · 1 评论 -
离散数学 --- 特殊关系 --- 偏序关系,哈斯图和特殊元素以及其它次序关系
1.关于第四点:上确界的定义是:作为上界中最小的元素(不能够有和它一样大的元素出现,如果有的话它就不是最小的元素,而是最小的元素之一,此时上确界不存在,下确界同理)1.最大元b只有在集合中所有元素都比b小的时候才能够存在,如果出现即不比b小,也不比b大的元素的话则最大元不存在(最小元同理)2.作为一个集合的上界的元素必须比集合中的所有元素都大(集合中不能够有一样大的元素出现),否则 的话这个元素不是集合的上界。正整数有最小值是1,但没有最大值;1.要注意的是集合中的最大元和最小元有且只有一个,如果找不到。原创 2022-09-06 23:50:34 · 19115 阅读 · 4 评论 -
离散数学 --- 特殊关系 --- 等价关系与集合的划分
2.上面这个等价关系是由每个划分的块集合的全关系序偶集合取并集得到的一个总的序偶集合,且每个块集合的全关系序偶集合都不一样(因为每个块集合的元素都不相同),所以等价关系这个序偶集合中的任意一个序偶元素都来自于某一个块集合的全关系序偶集合。1.关系的复合运算是左右两个关系中间一个圈,左右两个集合中间一个乘号这是笛卡尔积 --- 得到的结果是一个序偶集合,其中序偶的定义域由称号左边的集合元素提供,值域由乘号右边的集合元素提供。1.等价关系所需要的三个性质 --- 自反的,对称的,传递的必须同时具备,缺一不可。原创 2022-09-06 20:58:20 · 9304 阅读 · 0 评论 -
离散数学 --- 二元关系 --- 关系的性质和关系的闭包
3.研究关系的闭包问题是有实际意义的:比如在程序中函数A调用函数B,函数B又调用函数C,此时函数C不具有传递性,通过函数C我们只能知道是函数B调用了它,但是实际上真正让函数C能够被调用的是间接调用它的函数A,有没有什么办法通过函数C直接获得函数A呢?3.这时我们又要引入蕴涵式的另一个性质:善意推断,当蕴涵式的前件为假的时候,我们善意推断蕴涵式为真,也就是说这个第二个例子中的关系让蕴涵式为真了 ---> 即这个关系符合了这个性质的定义,则这个关系具有传递性。1.R‘ 具有的新的性质是根据我们的需要来选择的。原创 2022-09-06 16:32:26 · 6172 阅读 · 0 评论 -
离散数学 --- 二元关系 --- 关系的运算
进行关系A和关系B进行关系的复合运算的前提是关系A的后域是关系B的前域,且最终得到的复合关系C的前域是关系A的前域,后域是关系B的后域(且这个前域值在关系A中对应的后域值与这个后域值在关系B中对应的前域值相等)关系的复合运算对于关系矩阵而言直接就是布尔矩阵求积(此时我们得到的新的矩阵C是满足复合运算的定义的矩阵)对于关系矩阵而言,关系R逆的关系矩阵(邻接矩阵)是关系R的关系矩阵的转置矩阵。1.上面那个R的n次幂的基数是指通过R的n次幂求得的集合中的序偶的个数。1.分配律对于并集成立对于交集不成立。原创 2022-09-06 09:53:57 · 10896 阅读 · 0 评论 -
离散数学 --- 二元关系 --- 序偶,笛卡尔积与关系的定义和表示
二元关系(关系)R是笛卡尔积 A X B 的一个子集(A,B,R都是集合)1.A到B的意思是这两形成的笛卡尔积为 A X B1.第二点中A上的全关系的前提是 A = B ,此时笛卡尔积的序偶的左右两个元素都从集合A中取2.第三点中的恒等关系给定的符号表达是 IA(A缩小)--- I的下标不一定是A,而是对应的具有恒等关系的集合的集合符号(全关系的E的下标同理)1.从A到B时(笛卡尔积为A X B)关系R中用到的集合A的元素组成的子集称为定义域 --- domR。原创 2022-09-05 23:36:04 · 8199 阅读 · 1 评论 -
离散数学 --- 谓词逻辑 --- 谓词合式公式推理
1.如果不是通过存在特指规则(ES)来得到一个个体常量,而是通过全称特指规则得到一个个体常量的话,这个个体常量是任意的且对于全称量词而言是满足的,但由于它是任意的,也就是说它不一定满足存在推广(特指)规则能使公式成立的要求。所以我们要从根本上解决这个问题,将常量C也变为变量,且这个变量是和除常量C外的变元有关的变量 --- 获得这个变量的方法就是使用关于这些变量的函数来替换常量C --- f(除C以外的变元)1.在个体域有一个特定的个体常量能使公式成立 ,则能推出在个体域中存在个体常量使得公式成立。原创 2022-09-05 20:40:21 · 6585 阅读 · 2 评论 -
离散数学 --- 谓词逻辑 --- 谓词合式公式详解
量词分配律中:全称量词只有在合取联结词出现的时候才能够进行分配,而存在量词只有在析取联结词出现的时候才能够进行分配。1.在E35中虽然都有两个变量X,但这是两个不同的变量,只是取了同一个名字而已,我们当然也可以给它们取不同的名字(E36同理)这里面的S是一个不包含个体变量x的谓词公式,所以不受量词辖域管理,所以量词辖域可收缩。1.谓词逻辑是不可判定的,因为我们无法给出它的真值表,即我们无法列出它的所有解释。1.前束范式的一切量词都得在公式的最前端,且这些聚集起来的量词中不能够出现否定词。原创 2022-09-05 11:55:36 · 5748 阅读 · 0 评论 -
离散数学 --- 谓词逻辑 --- 谓词符号化与谓词合式公式
1.上面这些通过谓词将命题符号化的例子都有一个特点:它们的全称量词表示可以转化为存在量词表示,存在量词表示也可以转化为全称量词表示2.在第三个例子中,这是一个由两个原子命题组成的复合命题:分别是但前面那一句和但后面那一句,且两个原子命题同时成立时复合命题才成立(这是 ” 但 “ 关系词的特点) ---- 两个命题同时成立复合命题才为真时用 合取联结词连接两个原子命题1.千万不要颠倒量词的顺序,不同的量词顺序带来的真值结果是不一样的(个体变量的顺序同理)原创 2022-09-05 09:40:47 · 3162 阅读 · 0 评论 -
离散数学 --- 谓词逻辑 --- 谓词与量词的引入
上面这个表达式的解决方法就是将个体域写进谓词中,比如第一个的个体域是x属于老虎,那我们可以直接将它写到谓词中,x是老虎,这样起到的作用是一样的。1.第一点的例子: 加入谓词是 x是y的父亲 ,那么按照第一个顺序则是b是c的父亲,而按照第二个顺序则会得到完全不同的结果:c是b的父亲。1.全称量词描述的命题要为真的话,必须要个体域中所有的个体常量都能让谓词为真才行,反之只要有一个不行,这个命题就为假。1.除了统一个体域为全总个体域之外,我们也可以根据实际情况将个体域统一为别的域,比如实数域,复数域等等。原创 2022-09-04 23:43:04 · 1359 阅读 · 0 评论 -
离散数学 --- 命题逻辑 --- 基本推理形式和自然演绎法推理
2.推理的有效性和结果的真实性并不是一回事,有效的推理并不一定能够带来真实的结果,原因是当推理的前提条件中有假的时候,我们依然能够进行有效的推理,但是推理出的结果为假。最后是第三部分 I/E,当第三部分为I的时候,则表示左边的命题公式是通过基本蕴含关系推出来的,若为E的话则表示是通过基本等价关系推导出来的。箭头的左边是前提,箭头的右边是根据前提推出的逻辑结果 --- 如果前提为真,则推出来的逻辑结果为真,否则为推出来的逻辑结果为假。1.这里面的P的意思是左边的命题公式是属于给定的前提的。原创 2022-09-04 21:31:36 · 4399 阅读 · 0 评论 -
离散数学 --- 命题逻辑 --- 范式与推理
1.给极小项编码的时候用符号m(极小项用小m)+下标表示,且下标有两种表示方法:1.二进制表示法(按照命题变元顺序以及命题变元的值写出对应的二进制码)2.将第一种得到的二进制码转换为十进制表示(极大项同理)由上面的真值表技术我们可以得知一个命题公式的极小项合极大项是“互补”的,没有被选中作为极小项的“极小项”其实就是极大项(极大项同理)3.极小项的下标中出现的0表示的是对应命题变元的否定,1则表示的是对应的命题变元。4.极大项的下标中出现的0表示的是对应命题变元,1则表示的是对应的命题变元的否定。原创 2022-09-04 12:17:42 · 1884 阅读 · 0 评论 -
离散数学 --- 命题逻辑 -- 命题符号化与命题公式
1.如果要证明两个命题是逻辑等价关系的话,我们只需要将这两个命题分别作为等价运算符的左值和右值,然后进行计算,如这个等价命题公式为永真公式,两个命题为逻辑等价关系,否则不是。2.关于吸收律的补充 --- 只要括号外有命题P,括号内也有相同的命题P,且括号内外的命题运算符为析取合取反着来,那么这个这个式子就满足吸收律,比如下图这个式子依然满足吸收律。比如:中国在地球上且太阳东升西落,这是一个复合命题,它的两个简单命题的内容八竿子打不着,但是他们的真值都为真所以组成的复合命题也为真。下面是各个联结词的真值表。原创 2022-09-03 23:56:15 · 6765 阅读 · 0 评论 -
离散数学 ---- 命题逻辑 --- 什么是命题和命题联结词
可数 --- countable无穷集合间存在着差异,而这个差异通过阿列夫基数来区分自然数集的定义1.皮亚诺公理关于一个自然数的预测其实就是一个对自然数的定义原创 2022-05-28 17:10:02 · 1159 阅读 · 0 评论 -
离散数学【2】 --- 集合的运算
1.并集2.交集3.补集进行补集(补运算)的前提是:具有一个全集,且进行补运算的对象必须在全集中4.差集集合A - B ---> 得到的集合C中的元素是属于A而不属于B的元素5.对称差集对称差集其实就是 ( A - B )U ( B - A ) == A U B - A交B6.并集和交集的扩展多个集合并在一起 --- 称为并集的扩展 ---- 把多个集合的元素全都放在一个新集合中,然后相同的元素只保留一个多个集合交在一起 --- 称为交.原创 2022-05-08 22:02:42 · 3415 阅读 · 0 评论 -
离散数学【1】 集合论基础
1.集合是什么?集合是由指定范围内的满足给定条件的所有对象聚集在一起构成的,每一个对象称为这个集合的元素。(集合要求的是满足条件的所有对象 聚集 在一起,在这里仅仅要求聚集在一起即可,至于聚集的方式并没有限制,可以是由子集作为元素后聚集在一起,也可以只是由最简元素聚集在一起,也可是最简元素和集合元素的混搭)值得注意的是:集合本身也能够成为一个元素2.数学语言描述集合的规范1.用带或不带下标的大写英文字母表示集合:A,B....,小写字母用来表示元素3.数学语言描述集合之间的关系数原创 2022-05-08 11:38:03 · 2122 阅读 · 0 评论