N皇后
在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击
(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。)
你的任务是,对于给定的N,求出有多少种合法的放置方法。Input
共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量;如果N=0,表示结束。
Output共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。 Sample Input
1
8
5
0
Sample Output
1
92
10
题目分析:
1、题型:一道很经典的考察搜索的题目
2、题给限制条件:任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
3、分析:
一、皇后数与棋盘的边长相等,根据题给限制条件易得棋盘每行最多只能放一个皇后
可将皇后每次放的行数作为dfs函数传递的参数,进入下一次dfs时只需dfs(row+1),题目本来给了放棋子的三个限制条件,但通过这样的操作可以减少对“皇后是否在同一排”的判断,nice
用dfs的话,边界条件是皇后刚好超出棋盘边界,通过上述操作可减少判断,只需row>N时return
二、接下来再解决其他两个限制条件:不在同一列和不在对角线上
i、判断是否在同一列很好解决,用一个下标总数为列数的bool数组,每次放完皇后将以该皇后所在列数为下标的该数组元素值变为true(因为初始化为false),收回皇后就将该数组元素变为false
ii、判断是否在对角线上的话,我们可以很轻松的知道“从左上到右下”的这条对角线上的所有坐标,x与y的差为相等,“从左上到右下”的这条对角线上的所有坐标,x与y的和相等,然后方法就出来了
三、递归效率低,各种OJ上的该题一般都会卡时间。如果输出和样例一样,但一交一个TLE,那就打表吧。
然后就是我的AC代码
#include<stdio.h>
#include<string.h>
int a[20],b[20],c[20];//对角线标记
//a、b为左上到右下的对角线,c为另一条对角线
//因为数组下标不能为负数,故用了a、b两个数组来存
int l[12];//列标记
int ans,cnt;
int N;
void dfs(int row)
{
int i;
if(cnt==N)//皇后放完
{
ans++;//方案加一
return;
}
if(row>N)
{
return;//超出边界
}
for(i=1;i<=N;i++)//i为第几列
{
if(l[i])continue;//该列有皇后
if(c[row+i])continue;
if(i<row)//棋盘左下部分
{
if(a[row-i])
{
continue;
}
}
else
{
if(b[i-row])//棋盘右上部分
{
continue;
}
}
if(i<row)
{
a[row-i]=1;//在此对角线上放棋子
}
else
{
b[i-row]=1;//在此对角线上放棋子
}
c[row+i]=1;//放棋子
cnt++;//放置的皇后数加一
l[i]=1;//表示该列有皇后
dfs(row+1); //进入下一行
//收回皇后的同时收回与该皇后有关的标记
if(i<row)
{
a[row-i]=0;
}
else
{
b[i-row]=0;
}
c[row+i]=0;
cnt--;
l[i]=0;
}
}
int main()
{
int res[20];
int n;
for(N=1;N<=10;N++)
{
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
memset(l,0,sizeof(l));
ans=0,cnt=0;//有多组,故必须初始化
dfs(1);
res[N]=ans;//打表,存入数组
}
while(~scanf("%d",&N))
{
if(N==0)break;
printf("%d\n",res[N]);
}
}