N皇后dfsC语言题解

本文探讨了经典的N皇后问题,通过深度优先搜索策略优化,减少了对同一排和特定对角线判断的复杂性。通过递归实现并利用布尔数组记录皇后位置,展示了如何在给定棋盘大小的情况下计算合法皇后放置方案。最后,给出了AC代码示例,并介绍了如何处理递归效率问题和使用打表法优化输出。
摘要由CSDN通过智能技术生成

N皇后

在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击
(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。)
你的任务是,对于给定的N,求出有多少种合法的放置方法。

Input

共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量;如果N=0,表示结束。
Output

共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。 Sample Input
1
8
5
0
Sample Output
1
92
10

题目分析:

1、题型:一道很经典的考察搜索的题目
2、题给限制条件:任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
3、分析:
一、皇后数与棋盘的边长相等,根据题给限制条件易得棋盘每行最多只能放一个皇后
可将皇后每次放的行数作为dfs函数传递的参数,进入下一次dfs时只需dfs(row+1),题目本来给了放棋子的三个限制条件,但通过这样的操作可以减少对“皇后是否在同一排”的判断,nice
用dfs的话,边界条件是皇后刚好超出棋盘边界,通过上述操作可减少判断,只需row>N时return
二、接下来再解决其他两个限制条件:不在同一列和不在对角线上
i、判断是否在同一列很好解决,用一个下标总数为列数的bool数组,每次放完皇后将以该皇后所在列数为下标的该数组元素值变为true(因为初始化为false),收回皇后就将该数组元素变为false
ii、判断是否在对角线上的话,我们可以很轻松的知道“从左上到右下”的这条对角线上的所有坐标,x与y的差为相等,“从左上到右下”的这条对角线上的所有坐标,x与y的和相等,然后方法就出来了
三、递归效率低,各种OJ上的该题一般都会卡时间。如果输出和样例一样,但一交一个TLE,那就打表吧。

然后就是我的AC代码

#include<stdio.h>
#include<string.h>

int a[20],b[20],c[20];//对角线标记 
//a、b为左上到右下的对角线,c为另一条对角线 
//因为数组下标不能为负数,故用了a、b两个数组来存 
int l[12];//列标记 
int ans,cnt;
int N;

void dfs(int row)
{
	int i;
	if(cnt==N)//皇后放完 
	{
		ans++;//方案加一 
		return;
	}
	if(row>N)
	{
		return;//超出边界 
	}
	for(i=1;i<=N;i++)//i为第几列
	{
		if(l[i])continue;//该列有皇后
		if(c[row+i])continue; 
		if(i<row)//棋盘左下部分 
		{
			if(a[row-i])
			{
				continue;
			}
		}
		else
		{
			if(b[i-row])//棋盘右上部分 
			{
				continue;
			}
		}
		if(i<row)
		{
			a[row-i]=1;//在此对角线上放棋子 
		}
		else
		{
			b[i-row]=1;//在此对角线上放棋子 
		}
		c[row+i]=1;//放棋子 
		cnt++;//放置的皇后数加一 
		l[i]=1;//表示该列有皇后 
		dfs(row+1); //进入下一行
		//收回皇后的同时收回与该皇后有关的标记 
		if(i<row)
		{
			a[row-i]=0;
		}
		else
		{
			b[i-row]=0;
		}
		c[row+i]=0;
		cnt--;
		l[i]=0;
	}
}

int main()
{
	int res[20];
	int n;
	for(N=1;N<=10;N++)
	{
		memset(a,0,sizeof(a));
		memset(b,0,sizeof(b));
		memset(l,0,sizeof(l));
		ans=0,cnt=0;//有多组,故必须初始化
		dfs(1);
		res[N]=ans;//打表,存入数组 
	}
	while(~scanf("%d",&N))
	{
		if(N==0)break;
		printf("%d\n",res[N]);
	}
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值