树形DP&环形和后效性处理

树形dp


概念

依然是 O ( n ) O(n) O(n)类型的dp,通过dfs或bfs实现小状态向大状态的转移,本质是在树上更方便表示的线性动规

例题

P2014 [CTSC1997]选课

是做过的题,就不详细说了

树上的分组背包

POJ3585

从树上选取一个源点作为根,每条边都有一个容量,该树对应的叶子结点为汇点

问应当选取哪个点为源点,该树的流量最大

朴素算法:

枚举每个点作为源点,用树形dp求出最大流量

也就是从下往上取min

d[x]表示以 x x x为根的子树所得的最大流量
d [ x ] = ∑ y ∈ s o n ( x ) { m i n ( d [ y ] , c ( x , y ) ) ( y 的 度 数 > 1 ) c ( x , y ) ( y 的 度 数 为 1 ) d[x]=\sum_{y\in son(x)}\begin{cases} min(d[y],c(x,y))(y的度数>1)\\ c(x,y)(y的度数为1)\\ \end{cases} d[x]=yson(x){ min(d[y],c(x,y))(y>1)c(x,y)(y1)

#include<bits/stdc++.h>
using namespace std;
const int N=4e5+7;
vector<int> son[N];
int d[N],deg[N];
bool vis[N];
int n,T;
void dp(int x){
   
    d[x]=0,v[x]=1;
    for(int i=0;i<son[x].size();i++){
   
        int y=son[x][i];
        if(vis[y]) continue;
        dp(y);
        if(deg[y]==1) d[x]+=val[x][i];
        else d[x]+=min(d[x],d[y]+val[x][i]);
    }
}
int main(){
   
    scanf("%d",&T);
    while(T--){
   
        scanf("%d",&n);
        memset(d,0,sizeof(d));
        memset(vis,0,sizeof(vis));
        memset(deg,0,sizeof(deg));
        //...
    }
    return 0;
}

是否存在冗余呢?

答案是肯定的,因为每条边只有正向反向两种情况

本质只有 2 n 2n 2n种情况

二次扫描&换根法

我们首先以 x x x为根得到d[i],求以y为根的结果f[i]

我们会得到:
f [ y ] = d [ y ]

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值