数学基础知识

数学基础知识


线性筛

高斯消元

通过高斯消元,我们可以再 O ( n 3 ) O(n^3) O(n3)的时间复杂度内求出线性方程组的解
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋮ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n \begin{cases} a_{11} x_1+a_{12}x_2+\dots+a_{1n}x_n=b_1\\ a_{21} x_1+a_{22}x_2+\dots+a_{2n}x_n=b_2\\ \vdots\\ a_{n1} x_1+a_{n2}x_2+\dots+a_{nn}x_n=b_n\\ \end{cases} a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2an1x1+an2x2++annxn=bn

解 { 无 解 无 穷 多 组 解 唯 一 解 解\begin{cases} 无解\\ 无穷多组解\\ 唯一解\\ \end{cases}

操作:

  • 把某一行乘一个非零的数
  • 交换某两行
  • 把某行的若干倍加到其他行上

初等行列变换

我们通过这些操作,将系数矩阵消乘成上三角矩阵

上三角矩阵:
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋮ a n n x n = b n \begin{cases} a_{11} x_1+a_{12}x_2+\dots+a_{1n}x_n=b_1\\ a_{22}x_2+\dots+a_{2n}x_n=b_2\\ \vdots\\ a_{nn}x_n=b_n\\ \end{cases} a11x1+a12x2++a1nxn=b1a22x2++a2nxn=b2annxn=bn
得到这个矩阵后.我们倒着把它消回去

如何判断解的情况呢?
{ 完 美 阶 梯 型 : 唯 一 解 0 = 非 0 : 无 解 0 = 0 : 有 无 穷 多 组 解 \begin{cases} 完美阶梯型:唯一解\\ 0=非0:无解\\ 0=0:有无穷多组解\\ \end{cases} :0=0:0=0:
具体过程:

  • 枚举每一列
  • 找到当前列绝对值最大的一行
  • 将该行换到最上面
  • 将该行第一个数的系数变成 1 1 1
  • 将下面所有行的当前列消成 0 0 0
  • 固定这一行

最后我们得到了一个对角线矩阵

这不就是暴力嘛…

/*************************************************************************
    > File Name: p3389[模板]高斯消元法.cpp
    > Author: Typedef 
    > Mail: 1815979752@qq.com 
    > Created Time: 2021/3/6 21:06:56
    > Tags: 
 ************************************************************************/
#include<bits/stdc++.h>
using namespace std;
const int N=110;
const double eps=1e-6;
double a[N][N];
int n;
int gauss(){
	int c,r;
	for(c=0,r=0;c<n;c++){
		int t=r;
		for(int i=r;i<n;i++)
			if(fabs(a[i][c])>fabs(a[t][c]))
				t=i;
		if(fabs(a[t][c])<eps) continue;
		for(int i=c;i<=n;i++) swap(a[t][i],a[r][i]);
		for(int i=n;i>=c;i--) a[r][i]/=a[r][c];
		for(int i=r+1;i<n;i++)
			if(fabs(a[i][c])>eps)
				for(int j=n;j>=c;j--)
					a[i][j]-=a[r][j]*a[i][c];
		r++;
	}
	if(r<n){
		for(int i=r;i<n;i++)
			if(fabs(a[i][n])>eps)
				return 2;//无解
		return 1;//无穷多组解
	}
	for(int i=n-1;i>=0;i--)
		for(int j=i+1;j<n;j++)
			a[i][n]-=a[i][j]*a[j][n];
	return 0;//有唯一解
}
int main(){
	scanf("%d",&n);
	for(int i=0;i<n;i++)
		for(int j=0;j<n+1;j++)
			scanf("%lf",&a[i][j]);
	int t=gauss();
	if(t==0){
		for(int i=0;i<n;i++) printf("%.2lf\n",a[i][n]);
	}
	else if(t==1) puts("No Solution");
	else puts("No Solution");
	system("pause");
	return 0;
}

求组合数

lv.1

C a b = a × ( a − 1 ) × ⋯ × ( a − b + 1 ) 1 × 2 × 3 × ⋯ × b = a ! b ! ( a − b ) ! C_a^b=\frac{a\times(a-1)\times\dots\times(a-b+1)}{1\times2\times3\times\dots\times b}=\frac{a!}{b!(a-b)!} Cab=1×2×3××ba×(a1)××(ab+1)=b!(ab)!a!

我们通过递推式: C a b = C a − 1 b + C a − 1 b − 1 C_a^b=C_{a-1}^{b}+C_{a-1}^{b-1} Cab=Ca1b+Ca1b1(不选+选)

这样可以预处理出所有组合数,询问直接查表即可

/*************************************************************************
    > File Name: 885求组合数1.cpp
    > Author: Typedef 
    > Mail: 1815979752@qq.com 
    > Created Time: 2021/3/6 22:26:40
    > Tags: 
 ************************************************************************/
#include<bits/stdc++.h>
using namespace std;
const int N=2010,mod=1e9+7;
int c[N][N];
void init(){
	for(int i=0;i<N;i++)
		for(int j=0;j<=i;j++)
			if(!j) c[i][j]=1;
			else c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
}
int main(){
	init();
	int n;
	scanf("%d",&n);
	while(n--){
		int a,b;
		scanf("%d%d",&a,&b);
		printf("%d\n",c[a][b]);
	}
	system("pause");
	return 0;
}

lv.2

lv.3

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值