【蓝桥杯】给定一个长度为 n 的数组 A1,A2,⋅⋅⋅,An。你可以从中选出两个数 Ai 和 Aj(i 不等于 j),然后将 Ai 和 Aj 一前一后拼成一个新的整数。例如 12 和 345可以拼成

给定一个长度为 n 的数组 A1,A2,⋅⋅⋅,An。

你可以从中选出两个数 Ai 和 Aj(i 不等于 j),然后将 Ai 和 Aj 一前一后拼成一个新的整数。

例如 12 和 345 可以拼成 12345 或 34512。

注意交换 Ai 和 Aj 的顺序总是被视为 2 种拼法,即便是 Ai=Aj 时。

请你计算有多少种拼法满足拼出的整数小于等于 K。

输入格式
第一行包含 2 个整数 n 和 K。

第二行包含 n 个整数 A1,A2,⋅⋅⋅,An。

输出格式
一个整数代表答案。

数据范围
1≤n≤10^5,
1≤K≤10^10,
1≤Ai≤10^9
输入样例:
4 33
1 2 3 4
输出样例:
8

代码如下: 

import java.util.Scanner;

public class Main{

	public static void main(String[] args) {
		// TODO Auto-generated method stub
        Scanner sc=new Scanner(System.in);
        int n=sc.nextInt();
        int k=sc.nextInt();
        int[] a=new int[n];
        for(int i=0;i<a.length;i++) {
        	a[i]=sc.nextInt();
        }
  
做如下个模型的石子合并,如下模型石子都能移动出列,且合并都仅发生在相邻堆石子中: (1)第一个模型:一行排列且相邻合并 有n堆石子形成一行(a1,a2,…,anai为第i堆石子个数),相邻堆可合并,合并的分值为新堆的石子数。求合并为一堆的最低得分最高得分。 (2)第二个模型:一圈排列且相邻合并 有n堆石子形成首位相连的一个环形(a1,a2,…,anai为第i堆石子个数ana1相邻),相邻堆可合并,合并的分值为新堆的石子数。求合并为一堆的最低得分最高得分。 例如4堆石子,每堆石子个数:9 4 4 5 若排成一行,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+4)+(13+4)+(17+5)=52。 若排成圈状,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+5)+(14+4)+(18+4)=54。 此题以第一模型的最低得分为例,很多同学想着采用总是从最小的相邻堆下手的思想,最后获得的也就是最低得分。但这个贪心策略是对的。 如下反例: 石子:9 4 6 1 5 贪心策略: 9 4 6 6 6 9 10 6 10 9 16 16 25 25 得分共计:6+10+16+25=57 但9 4 6 1 5 若如下方式合并: 13 6 1 5 13 13 6 6 6 13 12 12 25 25 13+6+12+25=56 或 9 4 6 6 6 9 4 12 12 13 12 13 25 25 6+12+13+25=56 后种方式合并出的56都比贪心策略的57来的更低,因为总选择最小的相邻堆去合并,并能保证后续每步都可以最小,也许这轮最小导致后续几轮分值较大。 Input 行。第一行n,第二行a1 a2an,每个ai(1<=i<=n)表示第i堆石子的个数,n<=100 Output 行。第一行是第一个模型的最低得分最高得分,中间空格相连,第二行是第二个模型的最低得分最高得分,中间空格相连。 Sample Input 4 9 4 4 5 Sample Output 43 52 43 54 Hint 第一个石子合并模型,书上3.1节的矩阵连乘问题类似. 假设m[i,j]为合并石子aiaj, 1≤i≤j≤n,所得到的最小得分,若没有“合并”这个动作,则为0。原问题所求的合并最小值即为m[1,n]。 递推公式如下,其中min表示求最小,sum表示求. (1) m[i,j]=0, if i=j (2) m[i,j]=min{m[i,k]+m[k+1][j] | for i<=k<j} + sum{a(t) | for i<=t<=j}, if i<j 至于求最大值完全同理. 至于第二个石子合并的环行模型,完全可以转化为第一个模型来求解.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值