用Java实现已知一个长度为 N 的数组:A1,A2,A3,…AN 恰好是 1∼N 的一个排列。 现在要求你将 A 数组切分成若干个 (最少一个,最多 N 个) 连续的子数组,并且每个子数组中包含的...

这道题的思路是,将数组分割成若干个连续的子数组,每个子数组中包含的整数恰好可以组成一段连续的自然数。

我们可以使用动态规划来解决这个问题。

定义一个状态 $dp_{i,j}$ 表示前 $i$ 个数能够分成 $j$ 个子数组的方案数。

那么状态转移方程为:

$dp_{i,j} = \sum_{k=0}^{i-1} dp_{k,j-1}$

其中,$k$ 表示从第 $k+1$ 个数开始分割,$j-1$ 表示前 $k$ 个数已经分成了 $j-1$ 个子数组。

最终的答案就是 $dp_{n,1} + dp_{n,2} + ... + dp_{n,n}$。

下面是 Java 代码的实现:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值