这道题的思路是,将数组分割成若干个连续的子数组,每个子数组中包含的整数恰好可以组成一段连续的自然数。
我们可以使用动态规划来解决这个问题。
定义一个状态 $dp_{i,j}$ 表示前 $i$ 个数能够分成 $j$ 个子数组的方案数。
那么状态转移方程为:
$dp_{i,j} = \sum_{k=0}^{i-1} dp_{k,j-1}$
其中,$k$ 表示从第 $k+1$ 个数开始分割,$j-1$ 表示前 $k$ 个数已经分成了 $j-1$ 个子数组。
最终的答案就是 $dp_{n,1} + dp_{n,2} + ... + dp_{n,n}$。
下面是 Java 代码的实现: