1、Hadoop 是一个由Apache 基金会所开发的分布式系统基础架构,HADOOP 通常是指一个更广泛的概念——HADOOP 生态圈,主要解决海量数据的存储和海量数据的分析计算问题
2、Hadoop 组成
1)Hadoop HDFS:一个高可靠、高吞吐量的分布式文件系统。2)Hadoop MapReduce:一个分布式的离线并行计算框架。3)Hadoop YARN:作业调度与集群资源管理的框架。4)Hadoop Common:支持其他模块的工具模块(Configuration、RPC、序列化机制、日志操作)。
、大数据技术生态体系
1)Sqoop:sqoop 是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql)间进行数据的传递,可以将一个关系型数据库(例如 :MySQL ,Oracle 等)中的数据导进到Hadoop 的HDFS 中,也可以将HDFS 的数据导进到关系型数据库中。
2)Flume:Flume 是Cloudera 提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume 支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。
3)Kafka:Kafka 是一种高吞吐量的分布式发布订阅消息系统,有如下特性:(1)通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB 的消息存储也能够保持长时间的稳定性能。(2)高吞吐量:即使是非常普通的硬件Kafka 也可以支持每秒数百万的消息(3)支持通过Kafka 服务器和消费机集群来分区消息。(4)支持Hadoop 并行数据加载。
4)Storm:Storm 为分布式实时计算提供了一组通用原语,可被用于“流处理”之中,实时处理消息并更新数据库。这是管理队列及工作者集群的另一种方式。Storm 也可被用于“连续计算”(continuous computation),对数据流做连续查询,在计算时就将结果以流的形式输出给用户。
5)Spark:Spark 是当前最流行的开源大数据内存计算框架。可以基于Hadoop 上存储的大数据进行计算。
6)Oozie:一个管理 Hdoop 作业( 作业( job)的工作流程调度管理系统。Oozie协调作业就是通过时间(频率)和有效数据触发当前的 Oozie工作流程。7)Hbas:一个分布式的、面向列开源数据库。HBase 不同于一般的关系数据库,它是一个适合于非结构化数据存储的库。
8)Hive:hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化文件映射为一张数据库表,并提供简单的 数据库表,可以将 sql 语句转换为 MapReduce任务进行运。其优点是学习成本低,可以通过类 SQL语句快速实现简单的MapReduce统计,不必开发专门的 MapReduce 应用,十分适合数据仓库的统计析。
9)R语言:R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。
10)Mahout:Apache Mahout是个可扩展的机器学习和数据挖掘库。
11)ZooKeeper:Zookeeper是Google的Chubby一个开源的实现。它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、 分布式同步、组服务等。ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。