近世代数-群论基础二

近世代数-群论基础二

子群与陪集

G G G按运算 ∘ \circ 形成群, H H H为群 G G G的非空子集。若 H H H按照运算 ∘ \circ (在笛卡尔集 H × H H\times H H×H上限制)也形成群,则称 H H H G G G子群;记为 H ≤ G H\leq G HG.

笛卡尔集

A , B A,B A,B均为集合, A × B A\times B A×B A A A B B B的笛卡尔积,是所有有序偶 ( a , b ) (a,b) (a,b)的集合,其中 a a a是来自 A A A的元素, b b b是来自 B B B的元素

A × B = { ( a , b ) ∣ a ∈ A 且 b ∈ B } A\times B=\{(a,b)|a\in A且b\in B\} A×B={(a,b)aAbB},此时 A × B A\times B A×B所形成的集合称为笛卡尔集

而这里引用笛卡尔集 H × H H\times H H×H的写法是为了说明在群的通过运算得到的结果在封闭空间 H H H内的性质


子群与群的关系

H H H为群 G G G的子群,则 H H H的单位元 e H e_H eH就是 G G G的单位元 e e e

证明
e H e H = e H = e e H ⇒ e H = e e_He_H=e_H=ee_H\\ \Rightarrow e_H=e eHeH=eH=eeHeH=e
a ∈ H a\in H aH H H H中的逆元 a H − 1 a_H^{-1} aH1就是 a a a G G G中的逆元 a − 1 a^{-1} a1

定理4.1 (子群判别定理) H H H为群 G G G的非空子集,则以下性质等价

( i ) H ≤ G (i) H\leq G (i)HG

( i i ) (ii) (ii) H H H对乘法封闭,对求逆也封闭(当 a ∈ H a\in H aH时,必有 a − 1 ∈ H a^{-1}\in H a1H

( i i i ) (iii) (iii) H H H对右除法封闭(当 a , b ∈ H a,b\in H a,bH时, a b − 1 ∈ H ab^{-1}\in H ab1H

证明:其中 ( i ) ⇒ ( i i ) ⇒ ( i i i ) (i)\Rightarrow (ii)\Rightarrow (iii) (i)(ii)(iii)显然

( i i i ) ⇒ ( i ) (iii)\Rightarrow (i) (iii)(i) 任取 a ∈ H a\in H aH,由已知得 e = a a − 1 ∈ H 且 a − 1 = e a − 1 ∈ H e=aa^{-1}\in H且a^{-1}=ea^{-1}\in H e=aa1Ha1=ea1H.(单位元 e ∈ H e\in H eH H H H对求逆封闭)取 h ∈ H h\in H hH,则 h a = h ( a − 1 ) − 1 ∈ H ha=h(a^{-1})^{-1}\in H ha=h(a1)1H.( H H H对乘法封闭)

综上,要验证群 G G G得某个子集 H H H G G G的子群,一般先验证 e ∈ H e\in H eH,再验证 H H H对右除法封闭

例子, Q ∗ ≤ R ∗ ≤ C ∗ \mathbb{Q}^*\leq\mathbb{R}^*\leq\mathbb{C}^* QRC S L n ( R ) ≤ G L n ( R ) SL_n(\mathbb{R})\leq GL_n(\mathbb{R}) SLn(R)GLn(R)

Q ∗ \mathbb{Q}^* Q:非零有理数构成的群; R ∗ \mathbb{R}^* R:非零实数构成的群; C ∗ \mathbb{C}^* C:非零无理数构成的群

定理4.2 G G G的若干个子群的交也是 G G G的子群

群的子集的乘积

G G G为群,对于 X , Y ⊆ G X,Y\subseteq G X,YG,定义
X − 1 = { x − 1 : x ∈ X } , X Y = { x y : x ∈ X 且 y ∈ Y } X^{-1}=\{x^{-1}:x\in X\},XY=\{xy:x\in X且y\in Y\}\\ X1={x1:xX},XY={xy:xXyY}
对于 X , Y , Z ⊆ G X,Y,Z\subseteq G X,Y,ZG ( X − 1 ) − 1 = X (X^{-1})^{-1}=X (X1)1=X ( X Y ) Z = X ( Y Z ) (XY)Z=X(YZ) (XY)Z=X(YZ)

H ≤ G H\leq G HG.
∵ H 对 求 逆 元 封 闭 ∴ H = H − 1 ∵ H = { h e : h ∈ H } ⊆ H H ⊆ H ∴ H H = H \begin{aligned} &\because H对求逆元封闭\\ &\therefore H=H^{-1}\\ &\because H=\{he:h\in H\}\subseteq HH \subseteq H\\ &\therefore HH = H \end{aligned} HH=H1H={he:hH}HHHHH=H
定理4.3 H H H K K K都是群 G G G的子群,则
H K ≤ G    ⟺    H K = K H HK\leq G\iff HK=KH HKGHK=KH
证明

⇒ \Rightarrow (充分性证明): K H = K − 1 H − 1 = ( H K ) − 1 = H K KH=K^{-1}H^{-1}=(HK)^{-1}=HK KH=K1H1=(HK)1=HK

⇐ \Leftarrow (必要性证明): e = e e ∈ H K e=ee\in HK e=eeHK.(单位元 e ∈ H K e\in HK eHK);
( H K ) ( H K ) − 1 = H K K − 1 H − 1 = H K H = H ( H K ) = H H K = H K (HK)(HK)^{-1}=HKK^{-1}H^{-1}=HKH=H(HK)=HHK=HK (HK)(HK)1=HKK1H1=HKH=H(HK)=HHK=HK
H K HK HK对右除法封闭)

子集的陪集(陪集本身不是 G G G的子群)

G G G为群, H ≤ G H\leq G HG,对于 a ∈ G a\in G aG
a H = { a h : h ∈ H } , H a = { h a : h ∈ H } aH=\{ah:h\in H\},Ha=\{ha:h\in H\} aH={ah:hH},Ha={ha:hH}
a H aH aH a a a所在的 H H H左陪集 H a Ha Ha a a a所在的 H H H右陪集

对于 h ∈ H h\in H hH,令 f ( h ) = a h f(h)=ah f(h)=ah,易知, f f f H H H a H aH aH的单射。由于 f f f又是 H H H a H aH aH的满射,有结论 ∣ a H ∣ = ∣ H ∣ |aH|=|H| aH=H;同理 ∣ H a ∣ = ∣ H ∣ |Ha|=|H| Ha=H

PS: ∣ a H ∣ = ∣ H ∣ |aH|=|H| aH=H是集 a H aH aH与集 H H H基数相同,也即是两个集合的元素之间可以一一对应

陪集相等的条件

H ≤ G , h ∈ G H\leq G,h\in G HG,hG.由 H H H的可除性条件
h H = H    ⟺    h ∈ H    ⟺    H h = H hH=H\iff h\in H \iff Hh = H hH=HhHHh=H
(对于 h h h相等的情况下,要使得陪集相等,需要 h ∈ H h\in H hH

对于 a , b ∈ G a,b\in G a,bG
a H = b H    ⟺    b − 1 a H = H    ⟺    b − 1 a ∈ H H a = H b    ⟺    H a b − 1 = H    ⟺    a b − 1 ∈ H aH=bH\iff b^{-1}aH=H\iff b^{-1}a\in H\\ Ha=Hb\iff Hab^{-1}=H\iff ab^{-1}\in H aH=bHb1aH=Hb1aHHa=HbHab1=Hab1H
x ∈ a H ∩ b H x\in aH\cap bH xaHbH,则 a − 1 x ∈ H 且 b − 1 x ∈ H a^{-1}x\in H且b^{-1}x\in H a1xHb1xH,从而 a H = x H = b H aH=xH=bH aH=xH=bH

类似地, H a ∩ H b ≠ ∅ ⇒ H a = H b Ha\cap Hb \neq \empty \Rightarrow Ha= Hb HaHb=Ha=Hb

(对于两个不同的子陪集,无公共元素)

子群的指标

定理4.4 H H H为群 G G G的子群,则
∣ { a H : a ∈ G } ∣ = ∣ { H a : a ∈ G } ∣ |\{aH:a\in G\}|=|\{Ha:a\in G\}| {aH:aG}={Ha:aG}

H H H G G G中的左陪集的个数与右陪集的个数相等)

证明:定义 S = { a H : a ∈ G } S=\{aH:a\in G\} S={aH:aG} T = { H a : a ∈ G } T=\{Ha:a\in G\} T={Ha:aG}的映射 f f f双射(一一对应的关系)

H ≤ G H\leq G HG时, ∣ { a H : a ∈ G } ∣ = ∣ { H a : a ∈ G } ∣ |\{aH:a\in G\}|=|\{Ha:a\in G\}| {aH:aG}={Ha:aG}叫作 H H H G G G中的指标,记为 [ G : H ] [G:H] [G:H]

陪集分解

H ≤ G H\leq G HG H H H G G G中所有不同的左陪集两两不相交,它们的并为 G G G;把 G G G写作不同的 H H H左陪集的并叫做 G G G按子群 H H H进行左陪集分解(同理右陪集分解)

定理4.5 拉格朗日定理 H H H为有限群 G G G的子群,则 ∣ H ∣ |H| H整除 ∣ G ∣ |G| G,且 [ G : H ] = ∣ G ∣ ∣ H ∣ [G:H]=\frac{|G|}{|H|} [G:H]=HG

证明:
设 [ G : H ] = k , 将 G 按 H 进 行 左 陪 集 分 解 故 G = a 1 H ∪ ⋯ ∪ a k H ∵ a i H 之 间 两 两 不 相 交 且 ∣ a i H ∣ = ∣ H ∣ ∴ ∣ G ∣ = k ∣ H ∣ \begin{aligned} &设[G:H]=k,将G按H进行左陪集分解\\ &故G = a_1H\cup\cdots\cup a_kH\\ &\because a_iH之间两两不相交且|a_iH|=|H|\\ &\therefore |G|=k|H| \end{aligned} [G:H]=k,GHG=a1HakHaiHaiH=HG=kH

子群指标的性质与应用

子群指标的基本性质

定理 5.1 k ≤ H ≤ G k\leq H \leq G kHG,且 [ G : H ] [G:H] [G:H] [ H : K ] [H:K] [H:K]有穷,则
[ G : H ] [ H : K ] = [ G : K ] [G:H][H:K]=[G:K] [G:H][H:K]=[G:K]
定理 5.2 H H H K K K都是群 G G G的子群,则
∣ { H g : g ∈ G 且 H g ⊆ H K } ∣ = [ K : H ∩ K ] |\{Hg:g\in G且Hg\subseteq HK\}|=[K:H\cap K] {Hg:gGHgHK}=[K:HK]
特别地, [ G : H ] [G:H] [G:H]有穷时, [ K : H ∩ K ] [K:H\cap K] [K:HK]也有穷,且
[ K : H ∩ K ] ≤ [ G : H ] [K:H\cap K]\leq [G:H] [K:HK][G:H]
定理 5.3(庞加莱Poincare定理) H 1 , ⋯   , H n H_1,\cdots,H_n H1,,Hn 都是群 G G G的指标有穷的子群,则 H 1 ∩ ⋯ ∩ H n H_1\cap\cdots\cap H_n H1Hn G G G中指标也有穷,且
[ G : ⋂ n i = 1 H i ] ⩽ ∏ i = 1 n [ G : H i ] [G:\underset{i=1}{\overset{n}{\bigcap}}H_i]\leqslant \overset{n}{\underset{i=1}{\prod}}[G:H_i] [G:i=1nHi]i=1n[G:Hi]
定理 5.4 G G G n n n阶群,则对任何 a ∈ G a\in G aG a n = e a^n = e an=e


欧拉函数 ϕ ( m ) \phi(m) ϕ(m)阶群 U m U_m Um

m m m为正整数,
U m = { a ‾ = a + m Z : a ∈ Z , g c d ( a , m ) = 1 } U_m=\{\overline{a}=a+m\mathbb{Z}:a\in \mathbb{Z},gcd(a,m)=1\} Um={a=a+mZ:aZ,gcd(a,m)=1}
按剩余类的乘法形成交换半群,且 ∣ U m ∣ = ϕ ( m ) |{U_m}|=\phi(m) Um=ϕ(m)

半群:在集合中,任意 x , y x , y x,y经过一元运算 x ∘ y x\circ y xy得到的结果依然是在该集合内的,且满足结合律

Euler定理 a ϕ ( m ) ≡ 1 ( m o d m ) a^{\phi(m)}\equiv 1\pmod m aϕ(m)1(modm) g c d ( a , m ) = 1 gcd(a,m)=1 gcd(a,m)=1

证明:

U m = { a ‾ = a + m Z : a ∈ Z , g c d ( a , m ) = 1 } U_m=\{\overline{a}=a+m\mathbb{Z}:a\in \mathbb{Z},gcd(a,m)=1\} Um={a=a+mZ:aZ,gcd(a,m)=1} ϕ ( m ) \phi(m) ϕ(m)阶Abel群。任意与 m m m互素的整数 a a a,由于 a ‾ ∈ U m \overline{a}\in U_m aUm,有 a ‾ ϕ ( m ) = 1 ‾ \overline{a}^{\phi(m)}=\overline{1} aϕ(m)=1 n n n阶群的任一个元素的 n n n次方等于单位元);于是
a ϕ ( n ) ‾ = 1 ‾ ⇒ a ϕ ( m ) ≡ 1 ( m o d m ) \overline{a^{\phi(n)}}=\overline{1} \Rightarrow a^{\phi(m)}\equiv 1\pmod m aϕ(n)=1aϕ(m)1(modm)
费马小定理 p p p为素数,则对任何 a ∈ Z a\in \mathbb{Z} aZ a p ≡ a ( m o d p ) a^p\equiv a\pmod p apa(modp)或者表示为 a p − 1 ≡ 1 ( m o d p ) a^{p-1}\equiv 1\pmod p ap11(modp)

元素的阶与循环群

群中元素的阶 a a a为群 G G G的元素。如果有正整数 n n n使得 a n = e a^n=e an=e,则称最小的这样的正整数 n n n a a a,用 o ( a ) o(a) o(a)表示 a a a的阶( o ( a ) o(a) o(a)可能为无穷)

  • o ( a ) o(a) o(a)无穷时, a i a^i ai a j a^j aj 两两不同;证明,当 k , m ∈ Z k,m\in \mathbb{Z} k,mZ

a k = a m    ⟺    a k − m = e    ⟺    a ∣ k − m ∣ = e    ⟺    k = m a^k=a^m\iff a^{k-m} = e\iff a^{|k-m|}=e\iff k=m ak=amakm=eakm=ek=m

  • o ( a ) = n o(a)=n o(a)=n时,

假设群 G G G中元 a a a的阶为 n n n;对于 k , m ∈ Z k,m\in \mathbb{Z} k,mZ,写作 k − m = n q + r k-m=nq+r km=nq+r(其中 q , r ∈ Z q,r\in \mathbb{Z} q,rZ 0 ⩽ r ⩽ n − 1 0\leqslant r\leqslant n-1 0rn1),则
a k = a m ⇒ a k − m = e    ⟺    ( a n ) q ⋅ a r = a r = e    ⟺    r = 0 ⇒ k ≡ m ( m o d n ) a^k=a^m\Rightarrow a^{k-m}=e \iff (a^n)^q\cdot a^r=a^r=e\\ \iff r=0\Rightarrow k\equiv m\pmod n ak=amakm=e(an)qar=ar=er=0km(modn)
特别地, a k = e = a 0 a^k=e=a^0 ak=e=a0当且仅当 n ∣ k n|k nk

o ( a m ) o(a^m) o(am) o ( a ) o(a) o(a)的关系

定理6.1 设群 G G G中元 a a a的阶为正整数 n n n o ( a ) = n o(a)=n o(a)=n),则对任何 m ∈ Z m\in \mathbb{Z} mZ o ( a m ) = n g c d ( m , n ) o(a^m)=\frac{n}{gcd(m,n)} o(am)=gcd(m,n)n

证明

当对于整数 k k k使得 a m k = e a^{mk}=e amk=e
( a m ) k = a m k = e    ⟺    n ∣ m k    ⟺    n ( m , n ) ∣ m ( m , n ) k    ⟺    n ( m , n ) ∣ k \begin{aligned} & (a^m)^k=a^{mk}=e \\ &\iff n|mk\\ &\iff\frac{n}{(m,n)}\bigg| \frac{m}{(m,n)}k\\ &\iff \frac{n}{(m,n)}\bigg| k \end{aligned} (am)k=amk=enmk(m,n)n(m,n)mk(m,n)nk
循环群

对于群 G G G的非空子集 X X X X X X生成的 G G G的子群
< X > = ⋂ X ⊆ H ⩽ G H <X>=\underset{X\subseteq H \leqslant G}{\bigcap}H <X>=XHGH
以上是包含 X X X G G G的最小子群,可知
< X > = { x 1 m 1 ⋯ x k m k : k ∈ Z + , x 1 , ⋯   , x k ∈ X 且 m 1 , ⋯   , m k ∈ Z } <X>=\{x_1^{m_1}\cdots x_k^{m_k}:k\in \mathbb{Z}^{+},x_1,\cdots,x_k\in X且m_1,\cdots,m_k\in\mathbb{Z} \} <X>={x1m1xkmk:kZ+,x1,,xkXm1,,mkZ}
X = { a 1 , ⋯   , a n } X=\{a_1,\cdots,a_n\} X={a1,,an}时可用 < a 1 , ⋯   , a n > <a_1,\cdots,a_n> <a1,,an>表示 < X > <X> <X>

G G G循环群,指存在 a ∈ G a\in G aG使得 G = < a > = { a m : m ∈ Z } G=<a>=\{a^m:m\in\mathbb{Z}\} G=<a>={am:mZ},这样的 a a a叫做循环群 G G G生成元

循环群的例子

G = < a > G=<a> G=<a>为无穷循环群,则 o ( a ) o(a) o(a)为无穷且各 a k a^k ak k ∈ Z k\in\mathbb{Z} kZ)两两不同

  • 任给正整数 m m m,加法群 m Z m\mathbb{Z} mZ为无穷循环群, m m m为其生成元。特别地,整数加群 Z \mathbb{Z} Z是由 1 1 1生成地无穷循环群( m m m 1 1 1时)
  • 如果 G = < a > G=<a> G=<a>为有限循环群,则 o ( a ) o(a) o(a)是个正整数 n n n,且 G G G恰有 n n n个不同元 a r a^r ar r = 0 , ⋯   , n − 1 r=0,\cdots,n-1 r=0,,n1
  • 任给正整数 n n n,乘法群

C n = { z ∈ C : z n = 1 } = { e 2 π i r n : r = 0 , ⋯   , n − 1 } C_n=\{z\in\mathbb{C}:z^n=1 \}=\{e^{2\pi i\frac{r}{n}}:r=0,\cdots,n-1 \} Cn={zC:zn=1}={e2πinr:r=0,,n1}

n n n阶循环群, e 2 π i n e^{2\pi\frac{i}{n}} e2πni为生成元; C \mathbb{C} C为复数集合

引理 6.1 循环群的子群仍为循环群

证明:

H ⩽ G = < a > H\leqslant G=<a> HG=<a>,若 H = { e } H=\{e\} H={e},则显然 H = < e > H=<e> H=<e>;

H H H中有非单位元,于是有正整数 n n n使得 a n ∈ H a^n\in H anH

d = m i n { n ∈ Z + : a n ∈ H } d=min\{n\in\mathbb{Z}^+:a^n\in H\} d=min{nZ+:anH},则 < a d > ⊆ H <a^d>\subseteq H <ad>H

又$H\subseteq G ={a^m:m\in\mathbb{Z}} $

a m ∈ H a^m\in H amH m = d q + r m=dq+r m=dq+r(其中 q , r ∈ Z q,r\in\mathbb{Z} q,rZ 0 ⩽ r < d 0\leqslant r<d 0r<d)则 a r = a m ( a d ) − q ∈ H a^r=a^m(a^d)^{-q}\in H ar=am(ad)qH,从而 r = 0 , a m = a d q ∈ < a d > r=0,a^m=a^{dq}\in<a^d> r=0,am=adq<ad>

定理 6.2 无穷循环群 G = < a > G=<a> G=<a>的所有不同子群为
H n = < a n > ( n = 0 , 1 , 2 , ⋯   ) H_n=<a^n>(n=0,1,2,\cdots) Hn=<an>(n=0,1,2,)
其中 H 1 , H 2 , H 3 , ⋯ H_1,H_2,H_3,\cdots H1,H2,H3,均为无穷循环群

证明:

n = 0 n=0 n=0时, H 0 = { e } H_0=\{e \} H0={e} G G G的一阶循环子群;

a k a^k ak两两不同, n ∈ Z + n\in \mathbb{Z}^+ nZ+ H n H_n Hn G G G的无穷循环子群

∴ H n ( n = 0 , 1 , 2 , ⋯   ) \therefore H_n(n=0,1,2,\cdots) Hn(n=0,1,2,) 两两不同, m i n { k ∈ Z + : a k ∈ H n } = n ( n = 1 , 2 , 3 , … ) min\{k\in \mathbb{Z}^+ :a^k\in H_n\}=n(n=1,2,3,…) min{kZ+:akHn}=n(n=1,2,3,)

任给 H ⩽ G H\leqslant G HG,由引理6.1有 m ∈ Z m\in \mathbb{Z} mZ使得 H = < a m > H=<a^m> H=<am>;令 n = ∣ m ∣ n=|m| n=m,则 H = < a m > = H n H=<a^m>=H_n H=<am>=Hn

定理 6.3 G = < a > G=<a> G=<a> n n n阶循环群, d d d为正整数; d d d不整除于 n n n时, G G G d d d阶子群, d ∣ n d|n dn H d = < a n d > H_d=<a^{\frac{n}{d}}> Hd=<adn> G G G唯一的 d d d阶子群

定理 6.4 G G G p n p^n pn阶群,这里 p p p为素数且 n ∈ Z + n\in \mathbb{Z}^+ nZ+,则 G G G必含 p p p阶元

证明:

任取 a ∈ G a\in G aG,依拉格朗日定理, o ( a ) = ∣ < a > ∣ o(a)=|<a>| o(a)=<a>整除 ∣ G ∣ = p n |G|=p^n G=pn.于是 1 ⩽ m ⩽ n 1\leqslant m\leqslant n 1mn使得 o ( a ) = p m o(a)=p^m o(a)=pm,显然 a p m − 1 a^{p^{m-1}} apm1的阶为 p p p

定理4.5 拉格朗日定理 H H H为有限群 G G G的子群,则 ∣ H ∣ |H| H整除 ∣ G ∣ |G| G,且 [ G : H ] = ∣ G ∣ ∣ H ∣ [G:H]=\frac{|G|}{|H|} [G:H]=HG

推论 6.1 素数阶群必为循环群

R e f e r e n c e Reference Reference

近世代数_中国大学MOOC(慕课) (icourse163.org)

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

M3ng@L

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值