关于同构关系的一些证明(1)

本文探讨了群论中的同构关系,包括正规子群、商群的概念和性质。通过一系列定理如第一、第二、第三同构定理,阐述了同态映射在群结构保持中的作用,并给出了群的子群与商群之间的一一对应关系。
摘要由CSDN通过智能技术生成

定义一种集合乘法 X Y = { x y ∣ x ∈ X , y ∈ Y } XY=\{xy|x\in X,y\in Y\} XY={ xyxX,yY}.
那么我们可以看见若 H ⩽ G H\leqslant G HG,则 H H = { h h ′ ∣ h , h ′ ∈ H } = { h ∣ h ∈ H } = H HH=\{hh'|h,h'\in H\}=\{h|h\in H\}=H HH={ hhh,hH}={ hhH}=H.
特别的,若集合中只有一个元素,那么可以这么写 { a } H = a H = { a h ∣ h ∈ H } \{a\}H=aH=\{ah|h\in H\} { a}H=aH={ ahhH}.
现在我们可以用这种乘法书写了.
Theorem 1  \text{Theorem 1 } Theorem 1  H ◃ G H\triangleleft G HG,当且仅当 g H = H g gH=Hg gH=Hg.
证明: H = g − 1 H g H=g^{-1}Hg H=g1Hg,显然正规子群的共轭仍然是原来的正规子群.
Lemma  \text{Lemma } Lemma  H ◃ G H\triangleleft G HG,那么任意集合在集合乘法中与 H H H可交换.
Definition  定 义 G / H = { a H ∣ a ∈ G } , 其 中 H ◃ G . \text{Definition }定义G/H=\{aH|a\in G\},其中H\triangleleft G. Definition G/H={ aHaG},HG.
Theorem 2  G / H \text{Theorem 2 }G/H Theorem 2 G/H是群,称作商群.
H H H G / H G/H G/H的幺元, a H aH aH的逆元是 a − 1 H a^{-1}H a1H,若 a H , b H ∈ G / H , aH,bH\in G/H, aH,bHG/H,那么 a H b H = a b H H = ( a b ) H ∈ G / H aHbH=abHH=(ab)H\in G/H aHbH=abHH=(ab)HG/H,也容易验证结合律,从而 G / K G/K G/K是群.
显然 G / H G/H G/H的每一个元素都是群 G G G的一个陪集,由拉格朗日定理商群的阶 [ G : H ] = ∣ G ∣ ∣ H ∣ \displaystyle [G:H]=\frac{|G|}{|H|} [G:H]=HG.
Example  \text{Example } Example  Z / < m > = Z m Z/\left<m\right>=Z_m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值