LeetCode——883. 三维形体投影面积

题目描述

n x n 的网格 grid 中,我们放置了一些与 x,y,z 三轴对齐的 1 x 1 x 1 立方体。

每个值 v = grid[i][j] 表示 v 个正方体叠放在单元格 (i, j) 上。

现在,我们查看这些立方体在 xyyzzx 平面上的投影。

投影 就像影子,将 三维 形体映射到一个 二维 平面上。从顶部、前面和侧面看立方体时,我们会看到“影子”。

返回 所有三个投影的总面积 。

示例 1:

在这里插入图片描述

输入:[[1,2],[3,4]]
输出:17
解释:这里有该形体在三个轴对齐平面上的三个投影(“阴影部分”)。

示例 2:

输入:grid = [[2]]
输出:5

示例 3:

输入:[[1,0],[0,2]]
输出:8

提示:

  • n == grid.length == grid[i].length
  • 1 <= n <= 50
  • 0 <= grid[i][j] <= 50

答案

我的答案

class Solution {
    public int projectionArea(int[][] grid) {
        int xy = 0;
        int xz = 0;
        int yz = 0;
        for (int i = 0; i < grid.length; i++) {
            int max = 0;
            int max1 = 0;
            for (int j = 0; j < grid[i].length; j++) {
                // 查找grid[i][]上的最大值
                max = Math.max(max,grid[i][j]);
                // 查找grid[][i]上的最大值
                max1 = Math.max(max1,grid[j][i]);
                // 如果不等0 xy加一
                if (grid[i][j]!=0){
                    xy++;
                }
            }
            xz += max;
            yz += max1;
        }
        return xy+xz+yz;
    }
}

官方答案

数学

思路与算法

根据题意,x 轴对应行,y 轴对应列,z 轴对应网格的数值。

因此:

  • xy 平面的投影面积等于网格上非零数值的数目;
  • yz 平面的投影面积等于网格上每一列最大数值之和;
  • zx 平面的投影面积等于网格上每一行最大数值之和。
    返回上述三个投影面积之和。

代码

class Solution {
    public int projectionArea(int[][] grid) {
        int n = grid.length;
        int xyArea = 0, yzArea = 0, zxArea = 0;
        for (int i = 0; i < n; i++) {
            int yzHeight = 0, zxHeight = 0;
            for (int j = 0; j < n; j++) {
                xyArea += grid[i][j] > 0 ? 1 : 0;
                yzHeight = Math.max(yzHeight, grid[j][i]);
                zxHeight = Math.max(zxHeight, grid[i][j]);
            }
            yzArea += yzHeight;
            zxArea += zxHeight;
        }
        return xyArea + yzArea + zxArea;
    }
}

复杂度分析

  • 时间复杂度:O(n^2),其中 n 是网格的行数或列数。

  • 空间复杂度:O(1)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值