题目描述
在 n x n
的网格 grid
中,我们放置了一些与 x,y,z 三轴对齐的 1 x 1 x 1
立方体。
每个值 v = grid[i][j]
表示 v
个正方体叠放在单元格 (i, j)
上。
现在,我们查看这些立方体在 xy
、yz
和 zx
平面上的投影。
投影 就像影子,将 三维 形体映射到一个 二维 平面上。从顶部、前面和侧面看立方体时,我们会看到“影子”。
返回 所有三个投影的总面积 。
示例 1:
输入:[[1,2],[3,4]]
输出:17
解释:这里有该形体在三个轴对齐平面上的三个投影(“阴影部分”)。
示例 2:
输入:grid = [[2]]
输出:5
示例 3:
输入:[[1,0],[0,2]]
输出:8
提示:
- n == grid.length == grid[i].length
- 1 <= n <= 50
- 0 <= grid[i][j] <= 50
答案
我的答案
class Solution {
public int projectionArea(int[][] grid) {
int xy = 0;
int xz = 0;
int yz = 0;
for (int i = 0; i < grid.length; i++) {
int max = 0;
int max1 = 0;
for (int j = 0; j < grid[i].length; j++) {
// 查找grid[i][]上的最大值
max = Math.max(max,grid[i][j]);
// 查找grid[][i]上的最大值
max1 = Math.max(max1,grid[j][i]);
// 如果不等0 xy加一
if (grid[i][j]!=0){
xy++;
}
}
xz += max;
yz += max1;
}
return xy+xz+yz;
}
}
官方答案
数学
思路与算法
根据题意,x 轴对应行,y 轴对应列,z 轴对应网格的数值。
因此:
- xy 平面的投影面积等于网格上非零数值的数目;
- yz 平面的投影面积等于网格上每一列最大数值之和;
- zx 平面的投影面积等于网格上每一行最大数值之和。
返回上述三个投影面积之和。
代码
class Solution {
public int projectionArea(int[][] grid) {
int n = grid.length;
int xyArea = 0, yzArea = 0, zxArea = 0;
for (int i = 0; i < n; i++) {
int yzHeight = 0, zxHeight = 0;
for (int j = 0; j < n; j++) {
xyArea += grid[i][j] > 0 ? 1 : 0;
yzHeight = Math.max(yzHeight, grid[j][i]);
zxHeight = Math.max(zxHeight, grid[i][j]);
}
yzArea += yzHeight;
zxArea += zxHeight;
}
return xyArea + yzArea + zxArea;
}
}
复杂度分析
-
时间复杂度:O(n^2),其中 n 是网格的行数或列数。
-
空间复杂度:O(1)。