【swjtu】算法实验5.4动态规划在实际中的应用

一、实验目的

1.理解动态规划算法的求解过程。

2.分析动态规划算法的时间复杂度,比较动态规划算法与其他算法的效率差异

3.学会如何利用动态规划算法求解具体问题,了解动态规划算法的局限性。

二、实验任务

有一个二维矩阵,矩阵中元素有正也有负。定义子矩阵的和为其所有元素之和,最大子矩阵为子矩阵和值最大的子矩阵。

输入:输入的第一行为N,表示矩阵的行数和列数。其后的N行每行包含N个元素,表示矩阵每行元素的值,元素之间用空格隔开。

输出:输出一行,包含一个整数,表示其最大子矩阵的和。

样例输入:4

          0 -2 -7 0

          9  2 -6 2

          -4 1 -4 1

          -1 8  0 -2

要求:

  1. 将矩阵的某一行看成一个序列,设计算法求该序列的最大子序列。
  2. 将矩阵相邻两行对应列的元素相加形成一个新的序列。试分析该子序列中每一个元素的含义,其最大子序列的含义。
  3. 设计算法求解该问题,分析样例输入情况下算法的执行过程,
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
思路: 首先,我们可以将矩阵转化为一个二维数组,然后通过枚举子矩阵的左上角和右下角坐标,来计算每个子矩阵的元素和。这样做的时间复杂度是 $O(n^4)$,显然不可取。 接下来,我们可以考虑优化这个算法。我们可以使用动态规划来解决这个问题。 首先,我们定义一个二维数组 $dp$,其 $dp[i][j]$ 表示以 $(i,j)$ 为右下角的所有子矩阵元素和最大的子矩阵的元素和。那么,我们可以得到如下的状态转移方程: $$ dp[i][j] = \begin{cases} matrix[i][j] & \text{if } i=0 \text{ or } j=0\\ dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1] + matrix[i][j] & \text{otherwise} \end{cases} $$ 其,$matrix$ 表示原始矩阵。 这个状态转移方程的含义是,以 $(i,j)$ 为右下角的所有子矩阵,最大的子矩阵可能有以下三种情况: - 以 $(i,j)$ 为右下角的单个元素矩阵; - 以 $(i,j-1)$ 为右下角的最大子矩阵,再加上第 $i$ 行的元素 $matrix[i][j]$; - 以 $(i-1,j)$ 为右下角的最大子矩阵,再加上第 $j$ 列的元素 $matrix[i][j]$; - 以 $(i-1,j-1)$ 为右下角的最大子矩阵,再加上第 $i$ 行和第 $j$ 列的元素 $matrix[i][j]$。 我们可以使用一个变量 $max\_sum$ 来记录所有子矩阵元素和最大的子矩阵的元素和。同时,我们还需要记录这个最大子矩阵的四个角的坐标 $(x1,y1,x2,y2)$。 最后,我们遍历 $dp$ 数组,找到其最大的元素 $dp[i][j]$,就可以得到最大子矩阵的元素和以及四个角的坐标。 代码实现: 下面是 Python 代码的实现:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码龄零年_921

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值