背包小记(01,完全,多重,分组)

背包小记

01背包

概述:

给你 n n n 个物品,每个物品的价值为 w i w_i wi ,现在给你一个 m m m容量的背包 , 每个物品可以选择要或者不要,问在背包容量下最大物品价值

状态方程

二维状态方程: d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − v [ i ] ] + w [ i ] ) dp[i][j] = max(dp[i-1][j],dp[i-1][j-v[i]]+w[i]) dp[i][j]=max(dp[i1][j],dp[i1][jv[i]]+w[i])
**一维状态方程: d p [ j ] = m a x ( d p [ j ] , d p [ j − v [ i ] ] + w [ i ] ) ( f o r ( i n t j = m ; j > = v [ i ] ; j − − ) ) dp[j] = max(dp[j],dp[j-v[i]]+w[i]) (for(int j = m ; j >= v[i] ; j --)) dp[j]=max(dp[j],dp[jv[i]]+w[i])(for(intj=m;j>=v[i];j)) **

完全背包

概述:

每个物品无限个,其他条件与01背包相同

状态转移方程

二维状态方程:
d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − v [ i ] ] + w [ i ] ) dp[i][j] = max(dp[i-1][j],dp[i][j-v[i]]+w[i]) dp[i][j]=max(dp[i1][j],dp[i][jv[i]]+w[i])
d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − v [ i ] ] + w [ i ] , . . . . , d p [ i − 1 ] [ j − k ∗ v [ i ] ] + w [ i ] ∗ k ) dp[i][j] = max(dp[i-1][j],dp[i-1][j-v[i]]+w[i],....,dp[i-1][j-k*v[i]]+w[i]*k) dp[i][j]=max(dp[i1][j],dp[i1][jv[i]]+w[i],....,dp[i1][jkv[i]]+w[i]k)
d p [ i ] [ j − v ] = m a x ( d p [ i − 1 ] [ j − v ] , d p [ i − 1 ] [ j − 2 ∗ v [ i ] ] + w [ i ] , . . . . , d p [ i − 1 ] [ j − k ∗ v [ i ] ] + w [ i ] ∗ k ) dp[i][j-v] = max(dp[i-1][j-v],dp[i-1][j-2*v[i]]+w[i],....,dp[i-1][j-k*v[i]]+w[i]*k) dp[i][jv]=max(dp[i1][jv],dp[i1][j2v[i]]+w[i],....,dp[i1][jkv[i]]+w[i]k)

**一维状态方程:
d p [ j ] = m a x ( d p [ j ] , d p [ j − v [ i ] ] + w [ i ] ) ( f o r ( i n t j = v [ i ] ; j < = m ; j + + ) dp[j] = max(dp[j],dp[j-v[i]]+w[i]) (for(int j = v[i] ; j <=m ; j ++) dp[j]=max(dp[j],dp[jv[i]]+w[i])(for(intj=v[i];j<=m;j++)
**

多重背包

概述:

物品数量分别为 s i s_i si , 其他与01背包相同

解法1:

将每个物品的数量用二进制表示法进行拆分,最后得到cnt个物品,再采用01背包选则即可,状态转移方程和01背包相同

解法2(单调队列优化):

由完全背包的状态转移方程 d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − v [ i ] ] + w , . . . . , d p [ i − 1 ] [ j − k ∗ v [ i ] ] + w ∗ k ) dp[i][j] = max(dp[i-1][j],dp[i-1][j-v[i]]+w,....,dp[i-1][j-k*v[i]]+w*k) dp[i][j]=max(dp[i1][j],dp[i1][jv[i]]+w,....,dp[i1][jkv[i]]+wk)可得,可将对0-m对v[i]取余将其划分为v[i]个类,对于每个类用单调队列维护即可,每次入队的数实际为 d p [ j + k ∗ v ] − k ∗ w dp[j+k*v] - k*w dp[j+kv]kw

代码:
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 20010;
int dp[N],q[N],pre[N];

int main()
{
    int n,m;
    cin>>n>>m;
    for(int i = 0 ; i < n ; i ++){
        int v,w,s;
        cin>>v>>w>>s;
        memcpy(pre,dp,sizeof dp);
        
        for(int j = 0 ; j < v ; j ++){//v个划分
            int head = 0 , tail = -1;
            for(int k = j ; k <= m ; k += v){
                
                if(head <= tail && k - s*v > q[head]) ++ head;
                
                while(head <= tail && pre[q[tail]] - (q[tail] - j)/v * w <= pre[k] - (k - j)/v * w ) -- tail;
                
                if(head <= tail) dp[k] = max(dp[k] , pre[q[head]] + (k - q[head])/v * w);
                
                q[++tail] = k;
            }
        }
    }
    cout<<dp[m]<<endl;
    return 0;
}

分组背包:

概述:n组物品,每组由 s i s_i si个,每组只能取一个,其余和01背包相同

解法:01背包里面每次枚举第i组物品中的 s i s_i si个物品

状态方程

一维状态方程: d p [ j ] = m a x ( d p [ j ] , d p [ j − s [ k ] ] + w [ k ] ) dp[j] = max(dp[j] , dp[j-s[k]]+w[k]) dp[j]=max(dp[j],dp[js[k]]+w[k])

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值