自然数的拆分问题
题目描述
任何一个大于 1 1 1 的自然数 n n n,总可以拆分成若干个小于 n n n 的自然数之和。现在给你一个自然数 n n n,要求你求出 n n n 的拆分成一些数字的和。每个拆分后的序列中的数字从小到大排序。然后你需要输出这些序列,其中字典序小的序列需要优先输出。
输入格式
输入:待拆分的自然数 n n n。
输出格式
输出:若干数的加法式子。
样例 #1
样例输入 #1
7
样例输出 #1
1+1+1+1+1+1+1
1+1+1+1+1+2
1+1+1+1+3
1+1+1+2+2
1+1+1+4
1+1+2+3
1+1+5
1+2+2+2
1+2+4
1+3+3
1+6
2+2+3
2+5
3+4
提示
数据保证, 2 ≤ n ≤ 8 2\leq n\le 8 2≤n≤8。
思路:
1. 输入数据n
2. 将n进行拆分 根据实例可以知道拆分的第一个数是1 - n/2 后面的数据都是重复的
3. DFS
. 终止条件 拆分后为0 输出数据
. 对减去的数枚举 1-n
. 判断当前要拆分的数减去一个数小于0 舍去;如果当前可以减去的数比前一个减去的数小 舍去
. 将可以减去的数装入数组 更新剩下的数 和 已经拆分的个数
. DFS
Code:
#include <stdio.h>
#include <stdlib.h>
int n, buf[10];
void dfs(int num, int step){ //当前要拆分的数num, 已经拆分的个数
int i;
if(num == 0){ //拆分完成
for(i = 0; i < step-1; i++){
printf("%d+", buf[i]);
}
printf("%d\n", buf[i]);
return ;
}
for(i = 1; i < n; i++){ //从num中减去i
if(num - i < 0) continue; //减过头了 舍去
if(buf[step-1] > i) continue; //减去的数比前面小 舍去
buf[step] = i;
dfs(num - i, step+1); //更新数据
}
}
int main(){
scanf("%d", &n);
int i;
for(i = 1; i <= n/2; i++){
buf[0] = i;
dfs(n-i, 1); //减去第一个数 dfs
}
return 0;
}