灯泡(三分、数学)

该文章介绍了一个利用数学原理(三分法结合相似三角形)解决人行走时影子长度变化极值的C++程序。通过输入高度、距离和初始位置,程序计算并输出影子最长时间。代码中采用三分法逐步逼近找到最大影子长度的精确位置。
摘要由CSDN通过智能技术生成

原题链接

解题思路:三分 + 相似三角形,人从最左边走到最右边,我们发现影子的长度是先递增然后递减的,所以影子长度的函数具有凹凸性,所以我们可以用三分来求极值
C++代码
#include <bits/stdc++.h>
using namespace std;
double H, D, h;
double check(double x)
{
	if (x <= D * h / H) return x + H - (H - h) * D / (D - x);
    else return (D - x) * h / (H - h);
}
int main()
{
	int T; 
    scanf("%d", &T);
	while(T -- )
	{
		scanf("%lf%lf%lf", &H, &h, &D);
		double l = 0, r = D;
		while(r-l >= 1e-6)
		{
			double mid1 = l + (r - l) / 3.0, mid2 = r - (r - l) / 3.0;//三分
			if(check(mid1) > check(mid2)) r = mid2;
			else l = mid1;
		}
		printf("%.3lf\n", check(r));
	}
	return 0;
}


参考博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值