[NOIP2012]借教室

7 篇文章 0 订阅
4 篇文章 0 订阅
这篇博客探讨了如何使用线段树优化区间修改和查询操作,以解决在数组中更新元素并检查是否存在负值的问题。文章比较了两种方法:一种是传统的线段树实现,另一种是采用二分和差分的优化方法。二分加差分的方法通过单调性减少了查询的时间复杂度,提高了算法效率。
摘要由CSDN通过智能技术生成

从线段树的思路来看就是维护区间最小值,对最小值进行更新,某一次小于0,则输出这次为答案
我的代码:

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1e6 + 10;
int n, m, a[N];

struct node {
	int l;
	int r;
	int lz;
	int w;
} tr[N << 2];


void pushdown(int u) {
	if (tr[u].lz) {
		tr[u << 1].w -= tr[u].lz;
		tr[u << 1 | 1].w -= tr[u].lz;
		tr[u << 1].lz += tr[u].lz;
		tr[u << 1 | 1].lz += tr[u].lz;
		tr[u].lz = 0;
	}

}


void pushup(int u) {
	tr[u].w = min(tr[u << 1].w, tr[u << 1 | 1].w);
}


void build(int u, int l, int r) {
	tr[u] = {l, r, 0};
	if (l == r) {
		tr[u].w = a[l];
		return;
	}
	int mid = l + r >> 1;
	build(u << 1, l, mid);
	build(u << 1 | 1, mid + 1, r);
	pushup(u);
}


void  update(int u, int l, int r, int k) {
	if (tr[u].l >= l && tr[u].r <= r) {
		tr[u].w -= k;
		tr[u].lz += k;
		return ;
	}
	pushdown(u);
	int mid = tr[u].l + tr[u].r >> 1;
	if (l <= mid) update(u << 1, l, r, k);
	if (r > mid)  update(u << 1 | 1, l, r, k);
	pushup(u);
	return ;
}

bool query(int u, int l, int r) {
	if (tr[u].l >= l && tr[u].r <= r) {
		if (tr[u].w <0) return false;
		else return true;
	}
	pushdown(u);
	int mid = tr[u].l + tr[u].r >> 1;
	bool f1 = 1, f2 = 1;
	if (l <= mid) f1 = query(u << 1, l, r);
	if (r > mid) f2 = query(u << 1 | 1, l, r);
	return f1 &f2;
}


int main() {
	scanf("%d%d", &n, &m);
	for (int i = 1; i <= n; i++) {
		scanf("%d", &a[i]);
	}
	build(1, 1, n);
	int d, s, t;
	bool f = 1;
	int cnt = 1;
	for (int T = 1; T <= m; T++) {
		scanf("%d%d%d", &d, &s, &t);
		bool ok = true;
        update(1, s, t, d);
		ok = query(1, s, t);
		if (!ok) {
			f = 0;
			cout << -1 << "\n";
			cout << T << "\n";
			break;
		}
	}

	if (f) cout << 0 << "\n";
	return 0;
}

更快的二分加差分的方法
首先,差分是一种对区间修改的优化,可以把时间复杂度降到只跑一遍
重点是二分,因为对于某个点,如果不满足,那么不满足的点一定是它,或是它的前方的某个点
如果满足,那就一定在后面
其实是单调的
就可以用二分来做:

#include<bits/stdc++.h>
using namespace std;
const int N=1e6+10;
int n,m,c[N],d[N],t[N],s[N],r[N];

inline bool check(int x)
{
    memset(c,0,sizeof c);
    for(int i=1;i<=x;i++)
    {
        c[s[i]]+=d[i];
        c[t[i]+1]-=d[i];
    }
    for(int i=1;i<=n;i++)
    {
        c[i]+=c[i-1];
        if(c[i]>r[i]) return true;
    }
    return false;
}


int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&r[i]);
    }
    for(int i=1;i<=m;i++) scanf("%d%d%d",&d[i],&s[i],&t[i]);
    if(!check(m))
    {
        cout<<0<<"\n";
        return 0;
    }
    int l=0,r=m;
    while(l<r)
    {
        int mid=l+r>>1;
        if(check(mid)) r=mid;//chushi
        else l=mid+1;
    }
    printf("-1\n%d\n",l);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值