从线段树的思路来看就是维护区间最小值,对最小值进行更新,某一次小于0,则输出这次为答案
我的代码:
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1e6 + 10;
int n, m, a[N];
struct node {
int l;
int r;
int lz;
int w;
} tr[N << 2];
void pushdown(int u) {
if (tr[u].lz) {
tr[u << 1].w -= tr[u].lz;
tr[u << 1 | 1].w -= tr[u].lz;
tr[u << 1].lz += tr[u].lz;
tr[u << 1 | 1].lz += tr[u].lz;
tr[u].lz = 0;
}
}
void pushup(int u) {
tr[u].w = min(tr[u << 1].w, tr[u << 1 | 1].w);
}
void build(int u, int l, int r) {
tr[u] = {l, r, 0};
if (l == r) {
tr[u].w = a[l];
return;
}
int mid = l + r >> 1;
build(u << 1, l, mid);
build(u << 1 | 1, mid + 1, r);
pushup(u);
}
void update(int u, int l, int r, int k) {
if (tr[u].l >= l && tr[u].r <= r) {
tr[u].w -= k;
tr[u].lz += k;
return ;
}
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
if (l <= mid) update(u << 1, l, r, k);
if (r > mid) update(u << 1 | 1, l, r, k);
pushup(u);
return ;
}
bool query(int u, int l, int r) {
if (tr[u].l >= l && tr[u].r <= r) {
if (tr[u].w <0) return false;
else return true;
}
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
bool f1 = 1, f2 = 1;
if (l <= mid) f1 = query(u << 1, l, r);
if (r > mid) f2 = query(u << 1 | 1, l, r);
return f1 &f2;
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
build(1, 1, n);
int d, s, t;
bool f = 1;
int cnt = 1;
for (int T = 1; T <= m; T++) {
scanf("%d%d%d", &d, &s, &t);
bool ok = true;
update(1, s, t, d);
ok = query(1, s, t);
if (!ok) {
f = 0;
cout << -1 << "\n";
cout << T << "\n";
break;
}
}
if (f) cout << 0 << "\n";
return 0;
}
更快的二分加差分的方法
首先,差分是一种对区间修改的优化,可以把时间复杂度降到只跑一遍
重点是二分,因为对于某个点,如果不满足,那么不满足的点一定是它,或是它的前方的某个点
如果满足,那就一定在后面
其实是单调的
就可以用二分来做:
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+10;
int n,m,c[N],d[N],t[N],s[N],r[N];
inline bool check(int x)
{
memset(c,0,sizeof c);
for(int i=1;i<=x;i++)
{
c[s[i]]+=d[i];
c[t[i]+1]-=d[i];
}
for(int i=1;i<=n;i++)
{
c[i]+=c[i-1];
if(c[i]>r[i]) return true;
}
return false;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&r[i]);
}
for(int i=1;i<=m;i++) scanf("%d%d%d",&d[i],&s[i],&t[i]);
if(!check(m))
{
cout<<0<<"\n";
return 0;
}
int l=0,r=m;
while(l<r)
{
int mid=l+r>>1;
if(check(mid)) r=mid;//chushi
else l=mid+1;
}
printf("-1\n%d\n",l);
}