实现方法:
1.先二维前缀将每个数字的前缀和保存,再保存他们前缀增加时候的位置(last数组维护)。
2.然后枚举从1~26的左边=右边长度(
k
1
k1
k1),然后找到他们前缀有
k
1
k1
k1个
x
(
范
围
1
−
26
)
x(范围1-26)
x(范围1−26),后缀有
k
1
k1
k1 个
x
x
x的下标,然后中间找最大
k
2
k2
k2长度,记录最大值即为答案,时间复杂度
O
(
m
∗
n
)
O(m*n)
O(m∗n).
3.详情看注解。
/*********************************************************************
程序名:
版权: Joecai
作者: Joecai
日期: 2022-04-11 10:39
说明:
*********************************************************************/
#include <bits/stdc++.h>
using namespace std;
#define x first
#define y second
# define rep(i,be,en) for(int i=be;i<=en;i++)
# define pre(i,be,en) for(int i=be;i>=en;i--)
typedef pair<int, int> PII;
#define ll long long
#define endl "\n"
#define LOCAL
#define pb push_back
#define eb emplace_back
#define sp(i) setprecision(i)
const int N = 2e5 + 10, INF = 0x3f3f3f3f;
void solve()
{
int n;
cin >> n;
vector<vector<int>>sum(27, vector<int>(n + 1, 0));//等于sum[26][n],求数字x的前缀和
vector<vector<int>>last(27, vector<int>(n + 2, 0));//等于last[26][n] 保存i前缀和为j时的下标
for (int i = 1; i <= n; i++)
{
int x;
cin >> x;
for (int j = 1; j <= 26; j++)
sum[j][i] = sum[j][i - 1];//维护前缀和
sum[x][i]++;
last[x][sum[x][i]] = i;//更新前缀和对应的下标
}
for (int i = 1; i <= 26; i++)
{
last[i][sum[i][n] + 1] = last[i][sum[i][n]] + 1;//防止越界,设置一下
}
int ans = 0;
for (int i = 1; i <= 26; i++)
{
for (int j = 0; j <= sum[i][n]; j++)
{
int l = last[i][j] + 1;
int r = last[i][sum[i][n] - j + 1] - 1;
if (l > r) break;
for (int k = 1; k <= 26; k++)
{
int cnt = sum[k][r] - sum[k][l - 1];
ans = max(ans, j * 2 + cnt);
}
}
}
cout << ans << endl;
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
//#ifdef LOCAL
//freopen("data.in.txt","r",stdin);
//freopen("data.out.txt","w",stdout);
//#endif
int __ = 1;
cin >> __;
while (__--)
{
solve();
}
return 0;
}