前几天了解了唯一分解性定理,看了之后感觉定理内容挺简单的,不知道这个定理能干什么,算是比较巧吧,这几天一下遇到了两道需要用唯一分解性定理的题目。
唯一分解定理内容
详细请见百度百科(此处只做简单介绍):百度百科:惟一分解性定理
整数唯一分解定理亦称为算术基本定理,是数论的重要定理之一。该定理断言:任何一个大于1的整数n都可以分解成若干个素因数的乘积,如果不计各个素因数的顺序,那么这种分解是唯一的,即若n > 1,则有:
其中p1 < p2 < … < pk且皆为素数ai(i = 1,2,…,k)皆为正整数。
两道例题
一:阶乘约数
题目描述:
算是一道比较简单的题吧,当时写这一题的时候卡了一下,事后发现题并不难,是一道很模板的题。
思路分析:
将100!分解为若干个素数的乘积,记录每一个素数的种类和个数,以2^3为例有四种选择:指数为0,为1,为2为3,即每个素数因子的选择个数是:其幂次 + 1
直接上代码吧:
#include <iostream>
#include <map>
using namespace std;
map<int,int> m;//键、值分别为素数、素数的个数
void solve(int n)
{
for(int i = 2; i <= n; i++)
{
while(n % i == 0)
{
m[i]++;
n /= i;//分解干净
}
}
}
int main()