第一章 整数的唯一分解定理

第一章 整数的唯一分解定理

整数的唯一分解定理,也称算术基本定理

1.1 整除性

  • 定义 Definition:设 a , b ∈ Z a,b\in Z a,bZ,若 ∃    q ∈ Z \exist\; q\in Z qZ
    ∋ a = b q \ni a=bq a=bq
    则称 b b b 整除 a a a,也称 a a a b b b 整除,称 b b b a a a 的一个因子/因数(divisor),也称 a a a b b b 的一个倍数(multiple)。记为 b ∣ a b\mid a ba

    否则即 ∀ q ∈ Z \forall q\in Z qZ,有 a ≠ b q a\ne bq a=bq,则称 b b b 不整除 a a a,也称 a a a 不被 b b b 整除,称 b b b 不是 a a a 的一个因子,也称 a a a 不是 b b b 的一个倍数。记为 b ∤ a b\nmid a ba

  • 性质 Property:设 a , b , c ∈ Z a,b,c\in Z a,b,cZ,则

    1. 1 ∣ a 1\mid a 1a b ∣ 0    ( ∵ 0 = b ⋅ 0 ) b\mid 0\;(\because 0=b\cdot 0) b0(0=b0) a ∣ a a\mid a aa 2 ∣ 2 n 2\mid 2n 22n

    2. b ∣ a , c ∣ b ⟹ c ∣ a b\mid a,c\mid b\Longrightarrow c\mid a ba,cbca

    3. a ∣ b , a ∣ c ⟹ a ∣ ( b m + c n ) ∀ m , n ∈ Z a\mid b,a\mid c\Longrightarrow a|(bm+cn)\quad \forall m,n\in Z ab,aca(bm+cn)m,nZ

    4. c ∈ Z , c ≠ 0 c\in Z,c\ne 0 cZ,c=0,则 a ∣ b    ⟺    a c ∣ b c a\mid b\iff \color{red}ac\mid bc abacbc

      证明

      充分性: b = a q ⟹ b c = a c ⋅ q ∴ a c ∣ b c b=aq\Longrightarrow bc=ac\cdot q\quad \therefore ac|bc b=aqbc=acqacbc

      必要性:设 a c ∣ b c ac\mid bc acbc,故 ∃    q ∈ Z , ∋ b c = a c ⋅ q ∵ c ≠ 0 ∴ b = a q ∴ a ∣ b \exist\;q\in Z,\ni bc=ac\cdot q\quad \because c\ne 0\therefore b=aq\therefore a\mid b qZ,bc=acqc=0b=aqab

    5. a ∣ b , b ≠ 0 ⟹ ∣ a ∣ ≤ ∣ b ∣ a\mid b,b\ne 0\Longrightarrow \color{red}|a|\le |b| ab,b=0ab

      证明

      ∃    b = a q ∵ b ≠ 0 ∴ q ≠ 0 ∴ ∣ q ∣ ≥ 1 \exist\; b=aq\because b\ne 0\therefore q\ne 0\therefore |q|\ge 1 b=aqb=0q=0q1

      ∴ ∣ b ∣ = ∣ a q ∣ = ∣ a ∣ ⋅ ∣ q ∣ ≥ ∣ a ∣ \therefore |b|=|aq|=|a|\cdot |q|\ge |a| b=aq=aqa

    6. a ∣ b , a ≠ 0 ⟹ b a ∣ b a\mid b,a\ne 0\Longrightarrow \dfrac{b}{a}\mid b ab,a=0abb

    7. ∀ a ∈ Z \forall a\in Z aZ,有 a ∣ − a a\mid -a aa ∣ a ∣ ∣ a |a|\mid a aa

  • 定理一 Theorem I (带余除法):设 a , b ∈ Z , b > 0 a,b\in Z,b>0 a,bZ,b>0,则 ∃ ∣    q , r ∈ Z , ∋ a = b q + r , 0 ≤ r < b \exist|\; q,r\in Z,\quad\ni \color{red}a=bq+r,0\le r<b q,rZ,a=bq+r,0r<b. 称 r r r 为余数或非负最小剩余,记作 r = < a > b r=<a>_b r=<a>b 。称 q q q 为商或不完全商

    证明 Prove

    存在性:由于 Z = ⋃ k = − ∞ ∞ [ k b , ( k + 1 ) b ) Z=\bigcup\limits_{k=-\infty}^{\infty}\left[kb,(k+1)b \right) Z=k=[kb,(k+1)b),所以 ∃ ∣ q ∈ Z , ∋ q b ≤ a < ( q + 1 ) b \exist| q\in Z,\ni qb\le a<(q+1)b qZ,qba<(q+1)b

    r = a − q b r=a-qb r=aqb,则 a = q b + r , 0 ≤ r < b a=qb+r,0\le r<b a=qb+r,0r<b. 即 q , r q,r q,r 的存在性得证。

    唯一性:设 a = q 1 b + r 1 = q 2 b + r 2 a=q_1b+r_1=q_2b+r_2 a=q1b+r1=q2b+r2,其中 q 1 , q 2 , r 1 , r 2 ∈ Z q_1,q_2,r_1,r_2\in Z q1,q2,r1,r2Z,且 0 ≤ r 1 , r 2 < b 0\le r_1,r_2<b 0r1,r2<b

    ∣ r 1 − r 2 ∣ = ∣ q 2 b − q 1 b ∣ = b ∣ q 1 − q 2 ∣ ( 1 ) |r_1-r_2|=|q_2b-q_1b|=b|q_1-q_2|\qquad (1) r1r2=q2bq1b=bq1q2(1)

    ∵ 0 ≤ r 1 , r 2 < b ∴ ∣ r 1 − r 2 ∣ < b ( 2 ) \because 0\le r_1,r_2<b\therefore |r_1-r_2|<b\qquad (2) 0r1,r2<br1r2<b(2)

    ( 1 ) (1) (1) 代入 ( 2 ) (2) (2) b ⋅ ∣ q 2 − q 1 ∣ < b ∴ ∣ q 2 − q 1 ∣ < 1 ( 3 ) b\cdot|q_2-q_1|<b\therefore |q_2-q_1|<1\qquad(3) bq2q1<bq2q1<1(3)

    但是 q 1 , q 2 ∈ Z ⟹ q 2 − q 1 ∈ Z ( 4 ) q_1,q_2\in Z\Longrightarrow q_2-q_1\in Z\qquad (4) q1,q2Zq2q1Z(4)

    故由 ( 3 ) (3) (3) ( 4 ) (4) (4) q 2 − q 1 = 0 ∴ q 1 = q 2 q_2-q_1=0\therefore q_1=q_2 q2q1=0q1=q2. 从而 r 1 = r 2 r_1=r_2 r1=r2,唯一性得证

  • 定理二 Theorem II:设 a 1 , a 2 ∈ Z a_1,a_2\in Z a1,a2Z,则 < a 1 ± a 2 > b = < < a 1 > b ± < a 2 > b > b \color{red}<a_1\pm a_2>_b=<<a_1>_b\pm<a_2>_b>_b <a1±a2>b=<<a1>b±<a2>b>b < a 1 ⋅ a 2 > b = < < a 1 > b ⋅ < a 2 > b > b \color{red}<a_1\cdot a_2>_b=<<a_1>_b\cdot<a_2>_b>_b <a1a2>b=<<a1>b<a2>b>b

    证明第二个等式 Prove:设 a 1 = b q 1 + r 1 , a 2 = b q 2 + r 2 a_1=bq_1+r_1,a_2=bq_2+r_2 a1=bq1+r1,a2=bq2+r2,则 r 1 = < a 1 > b , r 2 = < a 2 > b r_1=<a_1>_b,r_2=<a_2>_b r1=<a1>b,r2=<a2>b

    ∴ a 1 ⋅ a 2 = ( b q 1 + r 1 ) ( b q 2 + r 2 ) = b ( q 1 q 2 + q 1 r 2 + q 2 r 1 ) + r 1 r 2 \therefore a_1\cdot a_2=(bq_1+r_1)(bq_2+r_2)=b(q_1q_2+q_1r_2+q_2r_1)+r_1r_2 a1a2=(bq1+r1)(bq2+r2)=b(q1q2+q1r2+q2r1)+r1r2

    此时 r 1 , r 2 r_1,r_2 r1,r2 用带余除法得 r 1 r 2 = b q 3 + r 3 , 0 ≤ r 3 < b r_1r_2=bq_3+r_3,0\le r_3<b r1r2=bq3+r3,0r3<b

    ∴ r 3 = < r 1 ⋅ r 2 > b ( 1 ) \therefore r_3=<r_1\cdot r_2>_b\qquad (1) r3=<r1r2>b(1)

    ∴ a 1 a 2 = b ( q 1 q 2 + q 1 r 2 + q 2 r 1 + q 3 ) + r 3 \therefore a_1a_2=b(q_1q_2+q_1r_2+q_2r_1+q_3)+r_3 a1a2=b(q1q2+q1r2+q2r1+q3)+r3

    由此 r 3 = < a 1 ⋅ a 2 > b ( 2 ) r_3=<a_1\cdot a_2>_b\qquad(2) r3=<a1a2>b(2)

    ( 1 ) (1) (1) ( 2 ) (2) (2) < a 1 a 2 > b = r 3 = < r 1 r 2 > b = < < a 1 > b ⋅ < a 2 > b > b <a_1a_2>_b=r_3=<r_1r_2>_b=<<a_1>_b\cdot<a_2>_b>_b <a1a2>b=r3=<r1r2>b=<<a1>b<a2>b>b

1.2 最大公约数与辗转相除法

  • 定义 Definition:设 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an n n n 个不全为零的整数,若 d ∈ Z d\in Z dZ 整除每一个 a i , 1 ≤ i ≤ n a_i,1\le i\le n ai,1in,则称 d d d a 1 , . . . , a n a_1,...,a_n a1,...,an 的一个公因子(common divisor)。显然,此时公因子只有有限个,其中最大者被称为 a 1 , . . . , a n a_1,...,a_n a1,...,an 的最大公因子(greatest common divisor)。若 ( a 1 , . . . , a n ) = 1 (a_1,...,a_n)=1 (a1,...,an)=1,则称 a 1 , . . . , a n a_1,...,a_n a1,...,an互素的。

  • 定理一 Theorem I: 设 a , b , c ∈ Z a,b,c\in Z a,b,cZ,且 a = b q + c , q ∈ Z a=bq+c,q\in Z a=bq+c,qZ,则 ( a , b ) = ( b , c ) \color{red}(a,b)=(b,c) (a,b)=(b,c)

    证明 Prove:设 d 1 = ( a , b ) , d 2 = ( b , c ) d_1=(a,b),d_2=(b,c) d1=(a,b),d2=(b,c),则 d 1 ∣ a , d 2 ∣ b ⟹ d 1 ∣ ( a − b q ) = c d_1\mid a,d_2\mid b\Longrightarrow d_1|(a-bq)=c d1a,d2bd1(abq)=c

    ∵ d 1 ∣ b ⟹ d 1 \because d_1\mid b\Longrightarrow d_1 d1bd1 b , c b,c b,c 的一个公因子 ∴ d 1 ≤ d 2 \therefore d_1\le d_2 d1d2

    另一方面,同理可得 d 2 ≤ d 1 d_2\le d_1 d2d1

    ∴ d 1 = d 2 \therefore d_1=d_2 d1=d2

  • 辗转相除法:设 a , b ∈ Z , b > 1 a,b\in Z,b>1 a,bZ,b>1,计算 gcd ⁡ ( a , b ) \gcd(a,b) gcd(a,b)

  • 定理二 Theorem II r n = gcd ⁡ ( a , b ) \color{red}r_n=\gcd(a,b) rn=gcd(a,b)

    • 命题 r k = a x k + b y k ( 1 ≤ k ≤ n ) r_k=ax_k+by_k\quad(1\le k\le n) rk=axk+byk(1kn). 特别地 r n = a x n + b y n r_n=ax_n+by_n rn=axn+byn
  • 定理三 Theorem III (Bezout恒等式) ∃ x , y ∈ Z , ∋ a x + b y = gcd ⁡ ( a , b ) \exist x,y\in Z,\ni \color{red}ax+by=\gcd(a,b) x,yZ,ax+by=gcd(a,b)

    • 推论 Corollary a a a b b b 的任一个公因子均整除 ( a , b ) (a,b) (a,b)
  • 定理四 Theorem IV (Euclid引理) a ∣ b c , ( a , b ) = 1 ⟹ a ∣ c a\mid bc,(a,b)=1\Longrightarrow \color{red}a\mid c abc,(a,b)=1ac

    证明 ∵ ( a , b ) = 1 ∴ ∃ x , y ∈ Z , ∋ a x + b y = 1 \because (a,b)=1\therefore \exist x,y\in Z,\ni ax+by=1 (a,b)=1x,yZ,ax+by=1

    ∴ a c x + b c y = c \therefore acx+bcy=c acx+bcy=c,而 a ∣ b c , a ∣ a c x ⟹ a ∣ c a\mid bc,a\mid acx\Longrightarrow a\mid c abc,aacxac

    • 命题 ( a 1 , . . . , a n ) = ( ∣ a 1 ∣ , . . . , ∣ a n ∣ ) (a_1,...,a_n)=(|a_1|,...,|a_n|) (a1,...,an)=(a1,...,an)
  • 定理五 Theorem V:设 a 1 , a 2 , . . . a n ∈ Z + a_1,a_2,...a_n\in Z^+ a1,a2,...anZ+,记 d 2 = ( a 1 , a 2 ) , d 2 = ( d 2 , a 3 ) , . . . , d n = ( d n − 1 , a n ) d_2=(a_1,a_2),d_2=(d_2,a_3),...,d_n=(d_{n-1},a_n) d2=(a1,a2),d2=(d2,a3),...,dn=(dn1,an), 则有 d n = ( a 1 , . . . , a n ) \color{red}d_n=(a_1,...,a_n) dn=(a1,...,an)

  • 定理六 Theorem VI (Bezout恒等式):设 n ≥ 2 n\ge 2 n2 a 1 , . . . , a n a_1,...,a_n a1,...,an n n n 个正整数,则存在 x 1 , . . . , x n x_1,...,x_n x1,...,xn 使得
    ( a 1 , . . . , a n ) = a 1 x 1 + . . . + a n x n , x i ∈ Z \color{red}(a_1,...,a_n)=a_1x_1+...+a_nx_n,\quad x_i\in Z (a1,...,an)=a1x1+...+anxn,xiZ

1.3 最小公倍数

  • 定义:设 n ≥ 2 n\ge 2 n2 a 1 , . . . , a n a_1,...,a_n a1,...,an n n n 个整数,若 m ∈ Z m\in Z mZ 为每一个 a i ( 1 ≤ i ≤ n ) a_i(1\le i\le n) ai(1in) 的倍数,则称 m m m a 1 , . . . , a n a_1,...,a_n a1,...,an 的一个公倍数(common multiple)。称 a 1 , . . . , a n a_1,...,a_n a1,...,an 的所有正公倍数中最小者为最小公倍数(least common multiple),记为 lcm ⁡ ( a 1 , . . . , a n ) \operatorname{lcm}(a_1,...,a_n) lcm(a1,...,an) [ a 1 , . . . , a n ] [a_1,...,a_n] [a1,...,an]

    • 命题 [ a 1 , . . . , a n ] = [ ∣ a 1 ∣ , . . . , ∣ a n ∣ ] [a_1,...,a_n]=[|a_1|,...,|a_n|] [a1,...,an]=[a1,...,an]
  • 定理一:设 a , b ∈ Z + a,b\in Z^+ a,bZ+

    1. a a a b b b 的每一个公倍数均为 [ a , b ] [a,b] [a,b] 的倍数
    2. [ a , b ] = a b ( a , b ) \color{red}[a,b]=\dfrac{ab}{(a,b)} [a,b]=(a,b)ab
    • 性质 [ a , b ] = [ b , a ] [a,b]=[b,a] [a,b]=[b,a] [ [ a , b ] , c ] = [ a , [ b , c ] ] [[a,b],c]=[a,[b,c]] [[a,b],c]=[a,[b,c]]
  • 定理二:设 a 1 , a 2 , . . . , a n ( n ≥ 3 ) ∈ Z + a_1,a_2,...,a_n(n\ge 3)\in Z^+ a1,a2,...,an(n3)Z+,求 [ a 1 , a 2 , . . . , a n ] [a_1,a_2,...,a_n] [a1,a2,...,an]

    解:设 [ a 1 , a 2 ] = m 2 [a_1,a_2]=m_2 [a1,a2]=m2 [ m 1 , a 3 ] = m 3 [m_1,a_3]=m_3 [m1,a3]=m3 . . . ... ... [ m n − 1 , a n ] = m n [m_{n-1},a_n]=m_n [mn1,an]=mn,则
    m n = [ a 1 , a 2 , . . . , a n ] \color{red}m_n=[a_1,a_2,...,a_n] mn=[a1,a2,...,an]

1.4 素数、整数的唯一分解定理

  • 定义 n > 1 n>1 n>1 时,若 n n n 只有 1 1 1 n n n 这两个平凡因子,则称 n n n 为素数(质数)prime number。若 n n n 含非平凡因子,则称 n n n 为合数(复合数)。即 Z + = { 1 } ⋃ { 素 数 } ⋃ { 合 数 } Z^+=\{1\}\bigcup \{素数\}\bigcup\{合数 \} Z+={1}{}{}

    • 引理一:设 a > 1 , a ∈ Z a>1,a\in Z a>1,aZ,则 a a a 的大于 1 1 1 的最小正因子 q q q 必为素数,且当 a a a 为合数时,有 q ≤ a \color{red}q\le \sqrt{a} qa
    • 引理二:对于素数 p p p 和任一整数 a a a,有 p ∣ a p\mid a pa ( p , a ) = 1 (p,a)=1 (p,a)=1
    • 引理三:素数 p ∣ a b ⟹ p ∣ a , p ∣ b p\mid ab\Longrightarrow p\mid a,p\mid b pabpa,pb
      • 推论:素数 p ∣ a 1 a 2 . . . a l ⟹ ∃    1 ≤ i ≤ l , p ∣ a i p\mid a_1a_2...a_l \Longrightarrow \exist\; 1\le i\le l,p\mid a_i pa1a2...al1il,pai
  • 整数的唯一分解定理(算术基本定理):每一个大于 1 1 1 的整数美军可唯一地(不及次序)分解为一些素数的乘积,即若 a > 1 , a ∈ Z a>1,a\in Z a>1,aZ,则有
    a = p 1 p 2 . . . p n \color{red}a=p_1p_2...p_n a=p1p2...pn
    ( 1 ≤ n )    p 1 ≤ p 2 ≤ , , , ≤ p n (1\le n)\;p_1\le p_2\le,,,\le p_n (1n)p1p2,,,pn 均为素数。且若 a = p 1 p 2 . . . p n = q 1 q 2 . . . q m a=p_1p_2...p_n=q_1q_2...q_m a=p1p2...pn=q1q2...qm

    p 1 ≤ p 2 ≤ , , , ≤ p n ,    q 1 ≤ q 2 ≤ , , , ≤ q m    ( n , m ≥ 1 ) p_1\le p_2\le,,,\le p_n,\;q_1\le q_2\le,,,\le q_m\;(n,m\ge 1) p1p2,,,pn,q1q2,,,qm(n,m1),则 n = m n=m n=m p i = q i    ( ∀ 1 ≤ i ≤ n ) p_i=q_i\;(\forall 1\le i\le n) pi=qi(1in)

    可写为
    a = p 1 e 1 p 2 e 2 . . . p s e s \color{red} a=p_1^{e_1}p_2^{e_2}...p_s^{e_s} a=p1e1p2e2...pses
    其中 p 1 < p 2 < . . . < p s , s ≥ 1 , e i ≥ 1 p_1<p_2<...<p_s,s\ge 1,e_i\ge 1 p1<p2<...<ps,s1,ei1 称为标准分解式

    • 命题 p ∣ q p\mid q pq p , q p,q p,q 均为素数,则 p = q p=q p=q
  • 定理:设 a , b ∈ Z + a,b\in Z^+ a,bZ+,且 a = p 1 e 1 p 2 e 2 . . . p s e s a=p_1^{e_1}p_2^{e_2}...p_s^{e_s} a=p1e1p2e2...pses b = p 1 f 1 p 2 f 2 . . . p s f s b=p_1^{f_1}p_2^{f_2}...p_s^{f_s} b=p1f1p2f2...psfs,其中 p 1 < p 2 < . . . < p s , e i ≥ 0 , f i ≥ 0 p_1<p_2<...<p_s,e_i\ge 0,f_i\ge 0 p1<p2<...<ps,ei0,fi0 e i + f i ≥ 1 e_i+f_i\ge 1 ei+fi1,则

    • a a a 的每一个正因数均可写为 d = p 1 α 1 p 2 α 2 . . p s α s d=p_1^{\alpha_1}p_2^{\alpha_2}..p_s^{\alpha_s} d=p1α1p2α2..psαs,其中对任意 1 ≤ i ≤ s 1\le i\le s 1is 均有 0 ≤ α i ≤ e i \color{red}0\le \alpha_i\le e_i 0αiei

    • a a a 的一个正倍数 c c c 可写为 c = l ′ ⋅ p 1 e 1 p 2 e 2 . . . p s e s = l ⋅ p 1 β 1 p 2 β 2 . . . p s β s c=l'\cdot p_1^{e_1}p_2^{e_2}...p_s^{e_s}=l\cdot p_1^{\beta_1}p_2^{\beta_2}...p_s^{\beta_s} c=lp1e1p2e2...pses=lp1β1p2β2...psβs,其中 ( l , p 1 p 2 . . . p s ) = 1 (l,p_1p_2...p_s)=1 (l,p1p2...ps)=1 l ∈ Z + l\in Z^+ lZ+,且对任意 1 ≤ i ≤ s 1\le i\le s 1is 均有 β i ≥ e i \color{red}\beta_i\ge e_i βiei

    • ( a , b ) = p 1 min ⁡ ( e 1 , f 1 ) p 2 min ⁡ ( e 2 , f 2 ) . . . p s min ⁡ ( e s , f s ) {\color{red}(a,b)}=p_1^{\min(e_1,f_1)}p_2^{\min(e_2,f_2)}...p_s^{\min(e_s,f_s)} (a,b)=p1min(e1,f1)p2min(e2,f2)...psmin(es,fs)

    • [ a , b ] = p 1 max ⁡ ( e 1 , f 1 ) p 2 max ⁡ ( e 2 , f 2 ) . . . p s max ⁡ ( e s , f s ) {\color{red}[a,b]}=p_1^{\max(e_1,f_1)}p_2^{\max(e_2,f_2)}...p_s^{\max(e_s,f_s)} [a,b]=p1max(e1,f1)p2max(e2,f2)...psmax(es,fs)

1.5 厄拉多塞筛法 Eratosthense

  • 性质:每一个合数 n ≤ N n\le N nN 必含有一个素因子 q q q,使得 q ≤ N \color{red}q\le \sqrt{N} qN
  • 定理一 Euclid:存在无穷个素数
  • 定理二:存在无穷个形如 4 n − 1 \color{red}4n-1 4n1 的素数
    • 狄利克雷定理 Dirichlet:若 ( a , b ) = 1 \color{red}(a,b)=1 (a,b)=1,则 { a n + b } n − 1 ∞ \{an+b \}_{n-1}^{\infty} {an+b}n1 中含有无穷个素数
  • 定理二:给定一个整数 x 0 ∈ Z x_0\in Z x0Z,不存在 f ( x ) ∈ Z [ x ] f(x)\in Z[x] f(x)Z[x](整系数多项式),使得 x ≥ x 0 x\ge x_0 xx0 时, f ( x ) f(x) f(x) 总表示素数。

1.6 麦什涅数、费马数 Mersenne & Fermat

  • 定义:形如
    2 p − 1 \color{red}2^p-1 2p1
    的数称为麦什涅数 Mersenne,其中 p p p 为素数。记为 M p = 2 p − 1 M_p=2^p-1 Mp=2p1。当 p = 2 , 3 , 5 , 7 , . . . , 31 p=2,3,5,7,...,31 p=2,3,5,7,...,31 时, M p M_p Mp 是素数。

  • 定理一 M p M_p Mp 的素因子 q q q 必有形状
    q = 2 k p + 1 \color{red}q=2kp+1 q=2kp+1

    • 引理一 ( s a − 1 , s b − 1 ) = s ( a , b ) − 1 (s^a-1,s^b-1)=s^{(a,b)}-1 (sa1,sb1)=s(a,b)1
    • 引理二 p p p 为素数 ⟹ p ∣ 2 p − 1 \Longrightarrow p\mid 2^p-1 p2p1
  • 定义:称
    F n = 2 2 n + 1 \color{red}F_n=2^{2^n}+1 Fn=22n+1
    费马数 Fermat

  • 定理二:对任意 m ≠ n m\ne n m=n​,有
    gcd ⁡ ( F m , F n ) = 1 \color{red}\gcd(F_m,F_n)=1 gcd(Fm,Fn)=1

    • 引理:对任意 k ∈ Z ∗ k\in Z^* kZ,有 F n ∣ ( F n + k − 2 ) F_n\mid (F_{n+k}-2) Fn(Fn+k2)

1.7 完全数

  • 定义:当正整数 n n n​ 的所有正因子之和等于 2 n 2n 2n​,即
    σ ( n ) = 2 n \color{red}\sigma(n)=2n σ(n)=2n
    n n n​ 为一个完全数 6 6 6​ 与 28 28 28​ 均为完全数。

    • 因数和函数 σ : Z + → Z + \sigma:Z^+\rightarrow Z^+ σ:Z+Z+ σ ( n ) = ∑ d ∣ n d \sigma(n)=\sum\limits_{d\mid n}d σ(n)=dnd 表示 n n n 的诸因数之和,称 σ \sigma σ因数和函数
  • 定理一:设 p 1 , p 2 , . . . , p k p_1,p_2,...,p_k p1,p2,...,pk k k k 个不同素数, α 1 , α 2 , . . . , α k ∈ Z + \alpha_1,\alpha_2,...,\alpha_k\in Z^+ α1,α2,...,αkZ+。记 n = p 1 α 1 p 2 α 2 . . . p k α k n=p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k} n=p1α1p2α2...pkαk,则
    σ ( n ) = p 1 α 1 + 1 − 1 p 1 − 1 ⋅ p 2 α 2 + 1 − 1 p 2 − 1 . . . p k α k + 1 − 1 p k − 1 \color{red}\sigma(n)=\dfrac{p_1^{\alpha_1+1}-1}{p_1-1}\cdot \dfrac{p_2^{\alpha_2+1}-1}{p_2-1}...\dfrac{p_k^{\alpha_k+1}-1}{p_k-1} σ(n)=p11p1α1+11p21p2α2+11...pk1pkαk+11

  • 定理二 n ∈ Z + n\in Z^+ nZ+ 为偶完全数    ⟺    n = 2 p − 1 ( 2 p − 1 ) \iff \color{red}n=2^{p-1}(2^p-1) n=2p1(2p1)

  • 定理三:若 n n n 为奇完全数,则 n n n 必有分解式
    n = p a q 1 2 β 1 q 1 2 β 2 . . . q t 2 β t ( 1 ) n=p^aq_1^{2\beta_1}q_1^{2\beta_2}...q_t^{2\beta_t}\qquad (1) n=paq12β1q12β2...qt2βt(1)
    其中 p , q 1 , q 2 , . . . , q t p,q_1,q_2,...,q_t p,q1,q2,...,qt 为不同素数, a a a p p p 都是 4 h + 1 4h+1 4h+1 形的数。

  • 定理四:若 n n n 为奇完全数,则 ( 1 ) (1) (1) t ≥ 2 t\ge 2 t2

1.8 一次不定方程

  • 定义:二元一次不定方程是指
    a 1 x + a 2 y = n ( 1 ) a_1x+a_2y=n \qquad (1) a1x+a2y=n(1)
    其中 a 1 , a 2 , n ∈ Z a_1,a_2,n\in Z a1,a2,nZ,且 a 1 ⋅ a 2 ≠ 0 a_1\cdot a_2\ne 0 a1a2=0

  • 定理一:方程 ( 1 ) (1) (1) 有整数解    ⟺    ( a 1 , a 2 ) ∣ n \color{red}\iff (a_1,a_2)\mid n (a1,a2)n

  • 定理二:设 ( a 1 , a 2 ) = 1 (a_1,a_2)=1 (a1,a2)=1,则 ( 1 ) (1) (1) 的所有解为
    x = x 0 + a 2 t , y = y 0 − a 1 t , t ∈ Z \color{red}x=x_0+a_2t,\quad y=y_0-a_1t,\qquad t\in Z x=x0+a2t,y=y0a1t,tZ
    其中 x 0 , y 0 x_0,y_0 x0,y0 ( 1 ) (1) (1) 的一组解

  • 定理三 s s s 元一次不定方程( s ≥ 2 s\ge 2 s2
    a 1 x 1 + a 2 x 2 + . . . + a s x s = n ( 5 ) a_1x_1+a_2x_2+...+a_sx_s=n\qquad (5) a1x1+a2x2+...+asxs=n(5)
    有整数解    ⟺    ( a 1 , a 2 , . . . , a s ) ∣ n \color{red}\iff (a_1,a_2,...,a_s)\mid n (a1,a2,...,as)n

  • 定理四:设 ( a 1 , a 2 ) = 1 (a_1,a_2)=1 (a1,a2)=1,则当 n > a 1 a 2 \color{red}n>a_1a_2 n>a1a2 时, a 1 x 1 + a 2 x 2 = n a_1x_1+a_2x_2=n a1x1+a2x2=n 有正整数解 ( x 1 , x 2 ) ∈ Z 2 > 0 (x_1,x_2)\in Z^2>0 (x1,x2)Z2>0;而 n = a 1 a 2 n=a_1a_2 n=a1a2 时, a 1 x 1 + a 2 x 2 = n a_1x_1+a_2x_2=n a1x1+a2x2=n 无正整数解 ( x 1 , x 2 ) ∈ Z 2 > 0 (x_1,x_2)\in Z^2>0 (x1,x2)Z2>0

    • 推论:设 ( a 1 , a 2 ) = 1 (a_1,a_2)=1 (a1,a2)=1,则所有大于 a 1 a 2 − a 1 − a 2 \color{red}a_1a_2-a_1-a_2 a1a2a1a2 的整数均可表为 a 1 a_1 a1 a 2 a_2 a2 的非负整数的线性组合
      a 1 x 1 + a 2 x 2 ( x 1 ≥ 0 , x 2 ≥ 0 ) a_1x_1+a_2x_2\qquad (x_1\ge 0,x_2\ge 0) a1x1+a2x2(x10,x20)
      a 1 a 2 − a 1 − a 2 a_1a_2-a_1-a_2 a1a2a1a2 不能表成此形状。
  • 定理五:设 d i = ( a 1 , . . . , a n ) d_i=(a_1,...,a_n) di=(a1,...,an) i = 2 , . . . , s i=2,...,s i=2,...,s s > 1 , d 1 = a 1 , d s = 1 s>1,d_1=a_1,d_s=1 s>1,d1=a1,ds=1,则当 n > N ( a 1 , . . . , a s ) = − a 1 + ∑ i = 2 s a i ( d i − 1 d i − 1 ) n>N(a_1,...,a_s)=-a_1+\sum\limits_{i=2}^{s}a_i\left(\dfrac{d_{i-1}}{d_i}-1 \right) n>N(a1,...,as)=a1+i=2sai(didi11) 时方程 ( 5 ) (5) (5) 有整数解 x i ≥ 0 , i = 1 , . . . , s x_i\ge 0,i=1,...,s xi0,i=1,...,s

1.9 抽屉原理(鸡笼原理)

  • 简单表示:假如有至少 n + 1 n+1 n+1 物体装入 n n n 个盒子里,那么一定有某个盒子至少装有两个物体。

  • 定理一:设 n ∈ Z + n\in Z^+ nZ+,区间 [ 1 , 2 n ] [1,2n] [1,2n] 中有任意 n + 1 n+1 n+1 个不同的整数, a 1 , a 2 , . . . , a n + 1 a_1,a_2,...,a_{n+1} a1,a2,...,an+1 ,其中必有两者 a i , a j a_i,a_j ai,aj,使得 a i ∣ a j \color{red}a_i\mid a_j aiaj

  • 定理二:设 1 ≤ m < n 1\le m<n 1m<n A = ( a i j ) m n ∈ M m n ( Z ) A=(a_{ij})_{mn}\in M_{mn}(Z) A=(aij)mnMmn(Z) A A A 无零行,那么齐次线性方程组 A ⋅ ( x 1 ⋮ x n ) = 0 ⃗ = ( 0 ⋮ 0 ) A\cdot\begin{pmatrix}x_1\\\vdots\\x_n \end{pmatrix}=\vec{0}=\begin{pmatrix}0\\\vdots\\0 \end{pmatrix} Ax1xn=0 =00,必有一组 ( x 1 ⋮ x n ) ≠ 0 \begin{pmatrix}x_1\\\vdots\\x_n \end{pmatrix}\ne 0 x1xn=0 满足
    ∣ x k ∣ ≤ A 1 A 2 . . . A m n − m ( 1 ≤ k ≤ n ) ( k = 1 , . . . , m ) 其 中 A j = ∣ a j 1 ∣ + ∣ a j 2 ∣ + . . . + ∣ a j n ∣ ( j = 1 , . . . , m ) \color{red}|x_k|\le \sqrt[n-m]{A_1A_2...A_m}(1\le k\le n) \qquad (k=1,...,m)\\ 其中 A_j=|a_{j1}|+|a_{j2}|+...+|a_{jn}| \qquad (j=1,...,m)\\ xknmA1A2...Am (1kn)(k=1,...,m)Aj=aj1+aj2+...+ajn(j=1,...,m)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值