哈希表出现的原因
经过一段时间对数据结构的学习,我们应该知道:常用的数组和链表各自存在一定的优缺点。具体如下:
数组:查找容易,插入和删除数据困难
链表:查找困难,插入和删除数据容易
那有没有一种数据结构能结合二者的优点呢?
当然,这便是哈希表出现的原因。它是一种寻址容易、插入删除也容易的数据结构。
哈希表概念
首先呢,哈希表就是通过将关键字值(key)映射到数组的某个确定的下标值。如此,可以通过数组下标直接访问数据,而不必遍历所有数据。
哈希表查找的平均期望时间复杂度为O(1)
举个栗子吧~
我去图书馆借书,我想输入书的名字,查找到书的位置。
我们可以建立一个结构体数组,来查找,如下
#include <bits/stdc++.h>
using namespace std;
class BOOK
{
public:
int name;
int address;
};
BOOK a[5];
int main()
{
int the_name, the_address;
for (int i = 0; i < 5; i++)
{
a[i].name = i + 1;
a[i].address = (i + 1) * 10;
}
/*明显的,输入数据后,需要遍历所有数据*/
cin >> the_name;
for (int i = 0; i < 5; i++)
{
if (the_name == a[i].name)
{
the_address = a[i].address;
break;
}
}
cout << the_address;
return 0;
}
很明显,这其中有一个遍历的过程,时间复杂度为O(n)
而哈希表,则可以将这个a[i].name通过一定的规则转化为一个整数。这个整数经过处理成为一个数组的下标,对应此下标的数组空间用来存储address。
这样,我再想查找一本书的位置时,就像输出a[3]这样简单。
哈希数组
哈希表底层结构是一个数组,这个数组的类型和要被查找的数据的类型保持一致。
关键字
关键字可以是任意类型,不影响其转化为整数。
哈希函数
index=f(key)
简单点理解,哈希函数就是这个f
而好的哈希函数应具备两个特质
- 单射(即一对一,一个关键字生成一个唯一特定的下标)
- 雪崩效应:输入值 的 1 位的变化,能够造成输出值 1/2 的位的变化;雪崩效应是为了让哈希值更加符合随机分布的原则,哈希表中的键分布的越随机,利用率越高,效率也越高。
(有一说一,这条俺没看懂,求大佬解释)
值
即,value,对应上文提到的哈希数组的类型
总之,哈希的过程就是通过关键字来找值的过程。