哈希表(hash table)

哈希表出现的原因

经过一段时间对数据结构的学习,我们应该知道:常用的数组和链表各自存在一定的优缺点。具体如下:

数组:查找容易,插入和删除数据困难
链表:查找困难,插入和删除数据容易

那有没有一种数据结构能结合二者的优点呢?
当然,这便是哈希表出现的原因。它是一种寻址容易、插入删除也容易的数据结构

哈希表概念

首先呢,哈希表就是通过将关键字值(key)映射到数组的某个确定的下标值。如此,可以通过数组下标直接访问数据,而不必遍历所有数据

哈希表查找的平均期望时间复杂度为O(1)

举个栗子吧~
我去图书馆借书,我想输入书的名字,查找到书的位置。
我们可以建立一个结构体数组,来查找,如下

#include <bits/stdc++.h>
using namespace std;
class BOOK
{
public:
    int name;
    int address;
};
BOOK a[5];
int main()
{
    int the_name, the_address;
    for (int i = 0; i < 5; i++)
    {
        a[i].name = i + 1;
        a[i].address = (i + 1) * 10;
    }
    /*明显的,输入数据后,需要遍历所有数据*/
    cin >> the_name;
    for (int i = 0; i < 5; i++)
    {
        if (the_name == a[i].name)
        {
            the_address = a[i].address;
            break;
        }
    }
    cout << the_address;
    return 0;
}

很明显,这其中有一个遍历的过程,时间复杂度为O(n)

而哈希表,则可以将这个a[i].name通过一定的规则转化为一个整数。这个整数经过处理成为一个数组的下标,对应此下标的数组空间用来存储address。
这样,我再想查找一本书的位置时,就像输出a[3]这样简单。

哈希数组

哈希表底层结构是一个数组,这个数组的类型和要被查找的数据的类型保持一致。

关键字

关键字可以是任意类型,不影响其转化为整数。

哈希函数

index=f(key)

简单点理解,哈希函数就是这个f

而好的哈希函数应具备两个特质

  1. 单射(即一对一,一个关键字生成一个唯一特定的下标)
  2. 雪崩效应:输入值 的 1 位的变化,能够造成输出值 1/2 的位的变化;雪崩效应是为了让哈希值更加符合随机分布的原则,哈希表中的键分布的越随机,利用率越高,效率也越高
    (有一说一,这条俺没看懂,求大佬解释)

即,value,对应上文提到的哈希数组的类型

总之,哈希的过程就是通过关键字来找值的过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值