多线程类似于同时执行多个不同程序,多线程运行有如下优点:
- 使用线程可以把占据长时间的程序中的任务放到后台去处理。
- 用户界面可以更加吸引人,这样比如用户点击了一个按钮去触发某些事件的处理,可以弹出一个进度条来显示处理的进度
- 程序的运行速度可能加快
- 在一些等待的任务实现上如用户输入、文件读写和网络收发数据等,线程就比较有用了。在这种情况下我们可以释放一些珍贵的资源如内存占用等等。
线程与进程的区别:
-
线程是程序执行的最小单位,而进程是操作系统分配资源的最小单位:
-
一个进程由一个或者多个线程组成,线程是一个进程代码的不同执行路线
-
进程之间相互独立,但同一进程下的各个线程之间共享程序的内存空间(包括代码段,数据集,堆等),及一些进程级的资源(如打开文件和信号等);某进程内的线程在其他进程不可见;
-
调度和切换:线程上下文切换比进程上下文切换要快得多
-
每个独立的进程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。
线程导包
- 第一种
import threading#导入线程包
使用函数创建线程
def test(x):
print(x)
time.sleep(2)
#函数的线程创建
t1 = threading.Thread(target=test,args=(1,))#test不要带括号,参数放args中,是一个元组
t1.start()#线程启动
注意:threading.Thread(target=test,args=(1,)),test不要括号,如有参数则放在args元组中,没有则删去
使用类创建线程:
#类的调用线程
class nowtime(threading.Thread):#创建类继承线程
def __init__(self):
super().__init__()#继承父类的__init__函数
def run(self):
while 1:
localtime = time.asctime(time.localtime(time.time()))#将当前时间戳转换的元组格式化
print("当前时间为:",localtime)#输出函数
time.sleep(1)#停顿一秒
if __name__=="__main__":#主函数
t2 = nowtime()#创建实例化对象
t2.start()#运行线程
注意类中第二个方法必须为run,下面给有解释
第二种
import _thread
使用函数创建
def print_time( threadName, delay):
count = 0
while count < 5:
time.sleep(delay)
count += 1
print("%s: %s" % (threadName, time.ctime(time.time())))
_thread.start_new_thread( print_time, ("Thread-1", 2, ) )
线程模块
1.threading 模块提供的其他方法:
- threading.currentThread(): 返回当前的线程变量。
- threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
- threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。
2.Thread类提供了以下方法:
- run(): 用以表示线程活动的方法。
- start():启动线程活动。
- join([time]): 等待至线程中止。这阻塞调用线程直至线程的join() 方法被调用中止-正常退出或者抛出未处理的异常-或者是可选的超时发生。
- isAlive(): 返回线程是否活动的。
- getName(): 返回线程名。
- setName(): 设置线程名。
下面给出一个示例:
def run(x):
print(x)
time.sleep(2)
#函数的线程创建
t3 = threading.Thread(target=run,args=(1,))
t3.start()#线程启动
t3.join()#线程等待,此线程执行完才开始下一个
t4 = threading.Thread(target=run,args=(2,))
t4.start()#
线程同步
如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。
使用 Thread 对象的 Lock 和 Rlock 可以实现简单的线程同步,这两个对象都有 acquire 方法和 release 方法,对于那些需要每次只允许一个线程操作的数据,可以将其操作放到 acquire 和 release 方法之间。
多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。
有这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。
锁有两种状态——锁定和未锁定。每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。(保证只有一个线程在操纵数据,不至于出错)
经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。
class myThread (threading.Thread):
def __init__(self, threadID, name, delay):
threading.Thread.__init__(self)#继承父类的__init__函数
self.threadID = threadID
self.name = name
self.delay = delay
def run(self):
print ("开启线程: " + self.name)
# 获取锁,用于线程同步
threadLock.acquire()
print_time(self.name, self.delay, 3)
# 释放锁,开启下一个线程
threadLock.release()
def print_time(threadName, delay, counter):
while counter:
time.sleep(delay)
print ("%s: %s" % (threadName, time.ctime(time.time())))
counter -= 1
threadLock = threading.Lock()#启用锁
threads = []#创建空列表,用于存放线程列表
# 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)
# 开启新线程
thread1.start()
thread2.start()
# 添加线程到线程列表
threads.append(thread1)
threads.append(thread2)
# 等待所有线程完成
for t in threads:
t.join()
print ("退出主线程")