分析:
题目给出的操作直接明确了每个位置上的牌在操作后的位置,因此不妨开两个数组 s t a r t [ ] start[] start[], e n d [ ] end[] end[] 分别用来存放执行操作前的牌序与执行操作后的牌序。(即 start[i] 表示操作前第 i i i 个位置的牌的编号)。这样在每一次操作中就可以把数组 s t a r t [ ] start[] start[] 中的每一个位置的牌号存放到数组 e n d [ ] end[] end[] 的对应转换位置中,然后用数组 e n d [ ] end[] end[] 覆盖数组 start[] 来给下一次操作使用。这样当执行 k k k 轮操作后,数组 start[] 中存放了最终的排序。
由于输出需要用花色表示,且每种花色有 13 13 13 张牌,因此使用 char 型数组 mp[] = {S, H, C, D, J} 来建立编号与花色的关系。例如,假设当前牌号为 x,那么 m p [ ( x − 1 ) / 13 ] mp[(x - 1) / 13] mp[(x−1)/13] 即为这张牌对应的花色 (即 1 ~ 13 号为 ‘S’,14 ~ 26 号为 'H’等),而 ( x − 1 ) (x - 1) (x−1) % 13 + 1 13 + 1 13+1 即为它在所属花色下的编号。
代码(C++)
#include <iostream>
using namespace std;
const int N = 54;
char mp[5] = {'S', 'H', 'C', 'D', 'J'}; // 牌的编号与花色的对应关系
int main()
{
int start[N + 1], next[N + 1], end[N + 1];
int k;
cin >> k;
for (int i = 1; i <= N; i ++) start[i] = i; // 初始化牌的编号
for (int i = 1; i <= N; i ++) cin >> next[i]; // 输入每个位置上的牌在操作后应该在的位置
for (int step = 0; step < k; step ++)
{
// 把第 i 个位置的牌的编号存放在 next[i]
for (int i = 1; i <= N; i ++) end[next[i]] = start[i];
// 把 end 数组赋给 start 数组以供下此翻转使用
for (int i = 1; i <= N; i ++) start[i] = end[i];
}
for (int i = 1; i <= N; i ++)
{
if (i != 1) cout << " ";
cout << mp[(start[i] - 1) / 13] << (start[i] - 1) % 13 + 1;
}
}