极大似然估计笔记

一、原理

        我们拿到样本数据需要进行有参估计时,需要假设样本的服从某一分布,因此通过给定某种样本的分布,利用样本来拟合分布参数的过程就是极大似然法。给定一个概率分布 D,假定概率密度函数为 f ,以及一个分布参数 θ,我们可以从这个分布中抽出一个具有 n 个值的采样 X1,X2,···,Xn,通过利用 fD,我们就能计算出其概率:P (X1,X2,···,Xn) = fD (X1,···,Xn | θ) 一旦我们获得 X1,X2,···,Xn,我们就能从中找到一个关于 θ 的估计。最大似然估计会寻找关于 θ 的最可能的值。因此我们定义 θ 可能性: L(θ) = fD (X1,···,Xn | θ) 即找出让 L 最大的 θ,而这个使可能性最大的值 \widetilde{θ} 即被称为 θ 的最大似然估计。

二、求解步骤

加对数后用 l 表示

对于极大 θ 的求解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小卡规划

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值