典型相关分析和主成分分析

目标

  • 主成分分析(PCA)

    • 目标:降低数据维度,减少数据的冗余,通过线性变换将原始变量转换为一组新的不相关的变量(主成分)。
    • 重点:最大化数据的方差,即每个主成分解释的总方差最大化。
  • 典型相关分析(CCA)

    • 目标:分析两组变量之间的线性关系,找到两组变量之间的最大相关方向。
    • 重点:最大化两组变量投影后的相关性。

输入数据

  • 主成分分析(PCA)

    • 输入:单组变量,通常是同一组数据中的多个测量指标。
    • 输出:一组新的变量(主成分),这些变量是原始变量的线性组合,且彼此不相关。
  • 典型相关分析(CCA)

    • 输入:两组变量,这两组变量可以是来自不同数据集或不同来源的测量指标。
    • 输出:两组新的变量(典型变量),每组变量是原始变量的线性组合,且这两组变量之间的相关性最大化。

数学表示

  • 主成分分析(PCA)

    • 数学目标:最大化 Var(a^TX),其中 a 是特征向量,X是原始数据。

    • 求解方法:求解协方差矩阵的特征值和特征向量。
  • 典型相关分析(CCA)

    • 数学目标:最大化 corr(a^TX,b^TY),其中a和b是特征向量,X和Y是两组变量。
    • 求解方法:求解广义特征值问题。

结果解释

  • 主成分分析(PCA)

    • 结果:得到一组主成分,每个主成分解释的总方差逐步减少。
    • 解释:主成分的数量通常等于原始变量的数量,但通常只需保留前几个主成分(解释大部分方差的成分)。
  • 典型相关分析(CCA)

    • 结果:得到一组典型变量对,每对典型变量反映了两组变量之间的潜在关系。
    • 解释:典型相关系数(λiλi​​)反映了每对典型变量的相关性大小。

应用场景

  • 主成分分析(PCA)

    • 应用:数据降维,特征提取,可视化高维数据。
    • 示例:图像压缩,基因表达数据分析,市场研究中的变量简化。
  • 典型相关分析(CCA)

    • 应用:分析两组多变量数据之间的关系,如心理学研究中的问卷分析,生态学中的环境因子与生物多样性分析。
    • 示例:研究顾客特征与购买行为之间的关系,分析患者的生理指标与疾病之间的关系。

总结

  • PCA 主要用于数据降维和特征提取,通过最大化数据的方差来简化数据结构。
  • CCA 主要用于分析两组变量之间的线性关系,通过最大化两组变量投影后的相关性来揭示潜在的关联。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值