目标
-
主成分分析(PCA):
- 目标:降低数据维度,减少数据的冗余,通过线性变换将原始变量转换为一组新的不相关的变量(主成分)。
- 重点:最大化数据的方差,即每个主成分解释的总方差最大化。
-
典型相关分析(CCA):
- 目标:分析两组变量之间的线性关系,找到两组变量之间的最大相关方向。
- 重点:最大化两组变量投影后的相关性。
输入数据
-
主成分分析(PCA):
- 输入:单组变量,通常是同一组数据中的多个测量指标。
- 输出:一组新的变量(主成分),这些变量是原始变量的线性组合,且彼此不相关。
-
典型相关分析(CCA):
- 输入:两组变量,这两组变量可以是来自不同数据集或不同来源的测量指标。
- 输出:两组新的变量(典型变量),每组变量是原始变量的线性组合,且这两组变量之间的相关性最大化。
数学表示
-
主成分分析(PCA):
-
数学目标:最大化
,其中 a 是特征向量,X是原始数据。
- 求解方法:求解协方差矩阵的特征值和特征向量。
-
-
典型相关分析(CCA):
- 数学目标:最大化
,其中a和b是特征向量,X和Y是两组变量。
- 求解方法:求解广义特征值问题。
- 数学目标:最大化
结果解释
-
主成分分析(PCA):
- 结果:得到一组主成分,每个主成分解释的总方差逐步减少。
- 解释:主成分的数量通常等于原始变量的数量,但通常只需保留前几个主成分(解释大部分方差的成分)。
-
典型相关分析(CCA):
- 结果:得到一组典型变量对,每对典型变量反映了两组变量之间的潜在关系。
- 解释:典型相关系数(λiλi)反映了每对典型变量的相关性大小。
应用场景
-
主成分分析(PCA):
- 应用:数据降维,特征提取,可视化高维数据。
- 示例:图像压缩,基因表达数据分析,市场研究中的变量简化。
-
典型相关分析(CCA):
- 应用:分析两组多变量数据之间的关系,如心理学研究中的问卷分析,生态学中的环境因子与生物多样性分析。
- 示例:研究顾客特征与购买行为之间的关系,分析患者的生理指标与疾病之间的关系。
总结
- PCA 主要用于数据降维和特征提取,通过最大化数据的方差来简化数据结构。
- CCA 主要用于分析两组变量之间的线性关系,通过最大化两组变量投影后的相关性来揭示潜在的关联。