算法基础|avl树实现思路、左旋与右旋的理解

第一次学习avl树,感觉有点复杂,花了大半天的时间算是理解了一些皮毛。

目录

目录

基础

avl树是什么?

什么时候会自动开始调整呢?

如何进行自动平衡操作?

旋转是什么?

什么时候旋转两次?

总实现



基础

avl树是什么?

avl树是基于BST(二叉搜索树、二叉排序树)的一种数据结构,算是BST缺点的一种解决方案,特点是会自动调整树的高度,使得整个树中所结点的左右子树的高度差<=1。

如何得到左右子树的高度呢?

从叶子结点开始算起,叶子结点高度为0;如果一个结点,不是叶子结点,那么该节点的高度取决于左右子树中高度最高者+1,即

结点高度=max(左子树高度,右子树高度)+1

这样一来,事情就变得简单了,我们只需要在结点类中赋予相关的算法,即可实现获得结点高度的功能

大致设计如下:

(两种写法,思路是一致的)

    // 返回 以该结点为根结点的树的高度 ,为计算平衡因子而设计
//语法糖写法
    public int height() {
        //left == null ? 0 : left.height(),
        // 意思是左子树是否为空,如果左子树为空的话,说明左子树没有高度,赋予高度0,
        // 如果左子树不为空,那么递归下去,直到空为止,返回值会自己不断地增长,
        // 右边同理.
        int max = Math.max(left == null ? 0 : left.height(),
                right == null ? 0 : right.height());
        return max + 1;
    }

//非语法糖写法
    public int height() {
        if (left == null) {
            if (right == null) {
                return 1;
            } else return right.height() + 1;
        } else {
            if (right == null) {
                return left.height() + 1;
            }
            return Math.max(right.height(), left.height()) + 1;
        }

    }

什么时候会自动开始调整呢?

答:树中存在一个结点,该结点的左右子树高度差>1时。

好像是一句废话,接着往下推导,什么时候会造成左右子树高度差>1?

答曰:进行增加操作or删除操作时。

因此,在进行增删操作时,需要进行自动平衡的操作。

如何进行自动平衡操作?

根据具体的情况,进行不同的操作。

根据各种算法教程所述,一共有四种破坏平衡的情况,对应着四种操作。

这四种情况及应对的操作分别是:

1.Right Rotation (RR)

进行RR操作的情况:造成树失衡的原因源于右子结点的右子树(right tree of right node)。(不过说是右子树的右子结点也没什么毛病)

2.Left Rotation (LL)

同理; 

3.Left-Right Rotation (LR) or "Double left"

进行LR操作的情况:造成树失衡的原因源于左子节点的右子树(right node of left tree)

(后面会详细说明)

4.Right-Left Rotiation (RL) or "Double right"

类似于3.

旋转是什么?

旋转是改变子树结构的行为,通常说的进行左旋or右旋,指的是改变某棵树的某些结点的父子关系,从外观上看,就好像把某些结点向左or向右的进行了旋转。旋转得当可以减少树的高度(可以将高度-1)。

树的旋转是不太好理解的,因为旋转这个动作并不是单一结点的变化,而是许多结点都发生了变化。

旋转并不是某一个结点的事情,而是一棵树的事情,在外观的图上,有时候可以理解为根结点向下旋转,有时候也可以理解为根结点的子节点向上旋转,怎么方便怎么来。

下图为为失衡树的平衡过程,即右旋过程,从外观上看也就是把C结点向右旋转的操作(或者B结点,都行,只要方便理解或者实现):

图 右旋操作(最后一步高度标志有错误) 

可以看到C结点右旋后,原左子结点成为了父结点,B结点由于要多一个子结点C,所以原来的右子结点D就不能要了,也就是D结点需要从B中脱离,为了满足BST的特点,D结点需要成为C结点的左子结点。这样一来,C的右旋操作就完成了。

Java实现代码如下:(我把旋转的方法写到结点类里面了,写到其他地方也可以)

    //右旋转
    private void rightRotate() {
        //创建新的结点,值为当前根值
        Node newNode = new Node(value);
        //给新结点,即新C结点左右孩子结点
        newNode.right = right;
        newNode.left = left.right;
        //将原根结点左结点赋予值与引用,成为新的根结点,
        //即C成为新的B,原B无引用,会被自动回首
        value = left.value;
        left = left.left;
        right = newNode;
    }

旋转的代码实现有很多种方式,既可以写在结点里面,也可以写在树里面,怎么实现并无统一标准,只要旋转后满足高度要求就好了。

什么时候旋转两次?

当导致平衡因子不满足条件的高度的来源不是同一侧时,需要旋转两次。

图 对失衡子树进行左旋操作

这句话有点抽象,首先来介绍一下什么叫做平衡因子。

平衡因子: 某个结点的左子树的高度减去右子树的高度得到的差值。

直接上图:

这个图上,每个结点上边都标注了一个数字,数字代表该结点的高度。结点左右子树的高度差就是平衡因子,可以看出,C结点的平衡因子为2,并不满足AVL树的要求,因此需要旋转。那么如何旋转呢,看看是谁导致了平衡因子被破坏掉了,哦,原来是B结点的高度太高了,那么又是谁导致B结点的高度为2呢?一看,原来是D结点的高度为1,导致了B结点的高度为2。好了,到此为止,总结一下,我们发现C的平衡因子不满足条件,原因源自B结点,而B结点的高度源自D结点,D结点并不是像其父结点B结点,是一个左子节点,而是右子节点,那么此时,就需要旋转2次。

下图这种,就不需要旋转2次,因为导致不平衡的结点都在一侧:

根据以上内容,Java代码实现如下:

        //当添加完一个结点后,如果: (右子树的高度-左子树的高度) > 1 , 左旋转
        if (rightHeight() - leftHeight() > 1) {
            //如果它的右子树的左子树的高度大于它的右子树的右子树的高度
            if (right != null && right.leftHeight() > right.rightHeight()) {
                //先对右子结点进行右旋转
                right.rightRotate();
                //然后在对当前结点进行左旋转
                leftRotate(); //左旋转..
            } else {
                //直接进行左旋转即可
                leftRotate();
            }
            return; //代码规范性的体现
        }

        //当添加完一个结点后,如果 (左子树的高度 - 右子树的高度) > 1, 右旋转
        if (leftHeight() - rightHeight() > 1) {
            //如果它的左子树的右子树高度大于它的左子树的高度
            if (left != null && left.rightHeight() > left.leftHeight()) {
                //先对当前结点的左结点(左子树)->左旋转
                left.leftRotate();
                //再对当前结点进行右旋转
                rightRotate();
            } else {
                //直接进行右旋转即可
                rightRotate();
            }
        }

总实现



public class AVLTree_1 {
    public static void main(String[] args) {
        int[] arr = {1, 20, 2, 19, 3};
        //创建一个 AVLTree对象
        AvlTree avlTree = new AvlTree();
        //添加结点
        for (int i = 0; i < arr.length; i++) {
            avlTree.add(arr[i]);
        }

        System.out.println("树的高度=" + avlTree.root.height()); //5
        System.out.println("树的高度=" + avlTree.root.right.height()); //5
        System.out.println("树的高度=" + avlTree.root.left.height()); //5
        avlTree.infixOrder();

    }
}

class AvlTree {
    Node root;

    public void infixOrder() {
        if (root != null) {
            root.infixOrder();
        } else {
            System.out.println("二叉排序树为空,不能遍历");
        }
    }

    public void add(int val) {
        if (root == null) {
            root = new Node(val);
        } else {
            add(root, val);
        }
    }

    private void add(Node node, int val) {
        //命中
        if (node == null) {
            return;
        }

        if (val > node.val) {
            if (node.right == null) {
                node.right = new Node(val);
            } else add(node.right, val);
        } else {
            if (node.left == null) {
                node.left = new Node(val);
            } else add(node.left, val);
        }

        checkHeight(node);

    }

    private void checkHeight(Node node){
        //判断树高
        //如果左边比右边高,右旋
        if (leftHeight(node.left) - rightHeight(node.right) > 1) {
            //如果左子结点的右子树比左子树高,先把该结点左旋
            if (node.right != null && rightHeight(node.left.right) - leftHeight(node.left.left) > 1) {
                node.left.leftRotate();
            } else {
                node.rightRotate();
            }
        } else if (rightHeight(node.right) - leftHeight(node.left) > 1) {//如果右边比左边高,左旋
            if (node.left != null && leftHeight(node.left.right) > rightHeight(node.left.left)) {
                node.right.rightRotate();
            } else {
                node.leftRotate();
            }
        }
    }

    private int rightHeight(Node right) {
        if (right == null) {
            return 0;
        } else return right.height();
    }

    private int leftHeight(Node left) {
        if (left == null) {
            return 0;
        } else return left.height();
    }

    public void del() {


    }


}

class Node {
    int val;
    Node left;
    Node right;

    @Override
    public String toString() {
        return "Node{" +
                "val=" + val +
                '}';
    }

    public Node(int val) {
        this.val = val;
    }

    public int height() {
        //非语法糖写法
//        if (left == null) {
//            if (right == null) {
//                return 1;
//            } else return right.height() + 1;
//        } else {
//            if (right == null) {
//                return left.height() + 1;
//            }
//            return Math.max(right.height(), left.height()) + 1;
//        }

        //语法糖写法
        return Math.max(left == null ? 0 : left.height(),
                right == null ? 0 : right.height()) + 1;
    }


    public void leftRotate() {
        //左旋是因为该结点左右子树高度差大于1了
        //要将该结点作为右子结点的子节点,把右子结点当做根结点,其他结点顺序调整
        //如果从该结点的父结点出发,将该结点设置成该结点的右子结点,需要拿到父结点的指针
        //这是一件麻烦的事情,因此直接将该结点的值设置成该结点的右子结点,这样是很方便的

        Node newNode = new Node(val);
        newNode.right = right.left;
        newNode.left = left;

        val = right.val;
        left = newNode;
        right = right.right;

    }

    public void rightRotate() {
        //创建新的结点,值为当前根值
        Node newNode = new Node(val);
        //给新结点,即新C结点左右孩子结点
        newNode.right = right;
        newNode.left = left.right;

        //将原根结点左结点赋予值与引用,成为新的根结点,即C成为新的B,原B无引用,会被自动回收
        val = left.val;
        left = left.left;
        right = newNode;

    }

    public void infixOrder() {
        if (this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this);
        if (this.right != null) {
            this.right.infixOrder();
        }
    }
}

引用:

详解 AVL 树(基础篇) - 知乎

【尚硅谷】数据结构与算法(Java数据结构与算法)_哔哩哔哩_bilibili

2021年最好懂的红黑树_哔哩哔哩_bilibili

Microsoft Word - AVLTreeTutorial.rtf (ufl.edu)

AVL Tree – Introduction to LL, RR, LR, RL rotations and its implementation | Codingeek

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值