Kruskal


前言

复习acwing算法基础课的内容,本篇为讲解基础算法:Kruskal,关于时间复杂度:目前博主不太会计算,先鸽了,日后一定补上。


一、Kruskal算法

把所有边按照权重从小到大进行排序,枚举每条边(a,b,w),如果a,b不连通,把这条边也加入到集合中,判断a,b是否联通用的是并查集

下图来自AcWing算法基础课

在这里插入图片描述


二、AcWing 859. Kruskal算法求最小生成树

本题链接:AcWing 859. Kruskal算法求最小生成树
本博客提供本题截图:

在这里插入图片描述

本题分析

p数组就是并查集中的p数组,find函数就是并查集中的find函数,res存储的是最小生成树中的所有树边的权重之和,cnt存储的是当前加入了多少条边,因为一共有n个点,所以如果最后的边数小于n - 1的话,证明不存在最小生成树

AC代码

#include <cstdio>
#include <algorithm>

using namespace std;

const int N = 100010, M = 200010;
const int INF = 0x3f3f3f3f;

int n, m;
int p[N];

struct Edge
{
    int a, b, w;
    
    bool operator < (const Edge W) const
    {
        return w < W.w;
    }
}edges[M];

int find(int x)
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int kruskal()
{
    sort(edges, edges + m);
    
    for (int i = 1; i <= n; i ++ ) p[i] = i;
    
    int res = 0, cnt = 0;
    for (int i = 0; i < m; i ++ )
    {
        auto t = edges[i];
        int a = t.a, b = t.b, w = t.w;
        
        a = find(a), b = find(b);
        
        if (a != b)
        {
            res += w;
            cnt ++;
            p[a] = b;
        }
    }
    
    if (cnt < n - 1) return INF;
    else return res;
}

int main()
{
    scanf("%d%d", &n, &m);
    
    for (int i = 0; i < m; i ++ )
    {
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);
        
        edges[i] = {a, b, w};
    }
    
    int t = kruskal();
    
    if (t == INF) printf("impossible");
    else printf("%d", t);
    
    return 0;
}

三、时间复杂度

关于Kruskal算法的时间复杂度以及证明,后续会给出详细的说明以及证明过程,目前先鸽了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辰chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值