前言
复习acwing算法基础课的内容,本篇为讲解基础算法:Kruskal,关于时间复杂度:目前博主不太会计算,先鸽了,日后一定补上。
一、Kruskal算法
把所有边按照权重从小到大进行排序,枚举每条边(a,b,w),如果a,b不连通,把这条边也加入到集合中,判断a,b是否联通用的是并查集
下图来自AcWing算法基础课:
二、AcWing 859. Kruskal算法求最小生成树
本题链接:AcWing 859. Kruskal算法求最小生成树
本博客提供本题截图:
本题分析
p数组就是并查集中的p数组,find函数就是并查集中的find函数,res
存储的是最小生成树中的所有树边的权重之和,cnt
存储的是当前加入了多少条边,因为一共有n个点,所以如果最后的边数小于n - 1
的话,证明不存在最小生成树
AC代码
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 100010, M = 200010;
const int INF = 0x3f3f3f3f;
int n, m;
int p[N];
struct Edge
{
int a, b, w;
bool operator < (const Edge W) const
{
return w < W.w;
}
}edges[M];
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int kruskal()
{
sort(edges, edges + m);
for (int i = 1; i <= n; i ++ ) p[i] = i;
int res = 0, cnt = 0;
for (int i = 0; i < m; i ++ )
{
auto t = edges[i];
int a = t.a, b = t.b, w = t.w;
a = find(a), b = find(b);
if (a != b)
{
res += w;
cnt ++;
p[a] = b;
}
}
if (cnt < n - 1) return INF;
else return res;
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 0; i < m; i ++ )
{
int a, b, w;
scanf("%d%d%d", &a, &b, &w);
edges[i] = {a, b, w};
}
int t = kruskal();
if (t == INF) printf("impossible");
else printf("%d", t);
return 0;
}
三、时间复杂度
关于Kruskal算法的时间复杂度以及证明,后续会给出详细的说明以及证明过程,目前先鸽了。