数学知识:高斯消元


前言

复习acwing算法基础课的内容,本篇为讲解数学知识:高斯消元,关于时间复杂度:目前博主不太会计算,先鸽了,日后一定补上。


一、高斯消元

高斯消元运用于去解多元函数的解,如下图所示:
在这里插入图片描述
利用高斯消元,我们可以在很短的时间内去判断这个多元方程是否有解,如果是由唯一组解的情况下可以解出这一解,高斯消元的计算过程类似于线性代数,如何去解这个问题,我们在下文会根据题目进行一些规定和分析.


二、例题,代码

AcWing 883. 高斯消元解线性方程组

本题链接:AcWing 883. 高斯消元解线性方程组
本博客提供本题截图:
在这里插入图片描述
在这里插入图片描述

本题解析

首先来说明以下本题的几个需要声明的量和值,然后再介绍高斯消元:
我们用二维数组a去存储整个方程组,注意我们在做除法的时候因为我们表达一个分数比较复杂,所以这里用的是小数,用小数就有了精度缺失这个问题,比如1 / 3 * 3这个结果应该是等于1的,但是我们表示成小数之后运算结果为0.999...,故我们在表达0这个量的时候,因为精度问题,我们可以用一个特别小的数去当0,当运算结果小于我们设定的这个十分小的数的时候,我们就默认为0,在本题中,我们用const double eps = 1e-6;去表达这个无穷小的数.本题中,我们用c去表示列,用r去表示行

我们在解的过程中,规定如下解法:
把整个多元函数集化简成如下图所示的情况:(空白部分均为0
在这里插入图片描述
如果最后的化简结果如上图所示,那么就有唯一的一组解;
如果最后化简得到的式子中有0 = 非零这种特殊情况的,没有解;
如果最后化简得到的式子中有0 = 0这种情况的,有无数组解.

下面来规定几个高斯消元的操作(线代中的计算方法)
把某一行乘一个非零的数
交换某两行
将某行的若干倍加到另一行上

下面来正式介绍高斯消元在代码上如何实现求解的各种操作:
高斯消元分以下几个步骤:
枚举每一列c
1.找到绝对值最大的一行

for (c = 0, r = 0; c < n; c ++ )
{
	int t = r;
	for (int i = r; i < n; i ++ )
		if (fabs(a[i][c]) > fabs(a[t][c]))
			t = i;

	if (fabs(a[t][c]) < eps) continue;//如果最大的一行都已经是0了,那么就没必要操作这一列了,直接continue即可
}

2.将该行换到最上面

for (int i = c; i < n + 1; i ++ ) swap(a[t][i], a[r][i]);

3.将该行第一个数变成1
这步的操作其实就是让该行的每一列元素都除以第一个不为0的列的值,这里需要注意必须倒着进行,否则如果第一个数除以本身的话,后面的数处理起来就比较麻烦了,解决方法可以是存储一下第一个数,但是没有这个必要,倒着进行for循环即可解决这个问题

for (int i = n; i >= c; i -- ) a[r][i] /= a[r][c];

4.将下面所有行的第c列消成0
这里注意我们已经让第r行,第c列的数变成1了,所以我们在消后面几行的时候,只需要让第i行第j列的元素减去该行第c列元素的值乘第rj列元素的值

for (int i = r + 1; i < n; i ++ )
	if (fabs(a[i][c]) > eps)       //这个数不是0再进行操作
		for (int j = n; j >= c; j -- )
			a[i][j] -= a[r][j] * a[i][c];

下面来说说求解的过程:
按照常理来说,我们应该枚举到最后,我们的行数r应该是枚举到最后一行了,如果没有,证明这里有特殊情况出现了:即没有解或者有无穷多组解,下面我们来讨论这种情况:

if (r < n)
{
	for (int i = r; i < n; i ++ )
		if (fabs(a[i][n]) > eps)    //即等式左边全部为0,但是等式右边的值不为0
			return 2;               //证明无解
	return 1;                       //证明有无穷多组解
}

接下来看一下有解的代码,并计算解:
从下往上进行代值,得到方程的解,这里建议自己动手模拟一下这个过程

for (int i = n - 1; i >= 0; i -- )
	for (int j = i + 1; j < n; j ++ )
		a[i][n] -= a[j][n] * a[i][j];

	return 0;                        //证明有解

AC代码

#include <iostream>
#include <algorithm>
#include <cmath>

using namespace std;

const int N = 110;
const double eps = 1e-6;

int n;
double a[N][N];


int gauss()
{
    int c, r;
    for (c = 0, r = 0; c < n; c ++ )
    {
        int t = r;
        for (int i = r; i < n; i ++ )
            if (fabs(a[i][c]) > fabs(a[t][c]))
                t = i;

        if (fabs(a[t][c]) < eps) continue;

        for (int i = c; i < n + 1; i ++ ) swap(a[t][i], a[r][i]);
        for (int i = n; i >= c; i -- ) a[r][i] /= a[r][c];

        for (int i = r + 1; i < n; i ++ )
            if (fabs(a[i][c]) > eps)
                for (int j = n; j >= c; j -- )
                    a[i][j] -= a[r][j] * a[i][c];

        r ++ ;
    }

    if (r < n)
    {
        for (int i = r; i < n; i ++ )
            if (fabs(a[i][n]) > eps)
                return 2;
        return 1;
    }

    for (int i = n - 1; i >= 0; i -- )
        for (int j = i + 1; j < n; j ++ )
            a[i][n] -= a[j][n] * a[i][j];

    return 0;
}

int main()
{
    cin >> n;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < n + 1; j ++ )
            cin >> a[i][j];

    int t = gauss();

    if (t == 0)
    {
        for (int i = 0; i < n; i ++ ) printf("%.2lf\n", a[i][n]);
    }
    else if (t == 1) puts("Infinite group solutions");
    else puts("No solution");

    return 0;
}

AcWing 884. 高斯消元解异或线性方程组

本题链接:AcWing 884. 高斯消元解异或线性方程组
本博客提供本题截图:
在这里插入图片描述
在这里插入图片描述

本题解析

本题思路和上题思路基本一致,注意4.将下面所有行的第c列消成0 这一步,其实就和和第r行的每一列的对应元素进行异或运算
异或运算中满足a ^ b = c, c ^ b = a,故我们在求解每个元素的值得时候可以利用异或去运算求解.

AC代码

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 110;

int n;
int a[N][N];

int gauss()
{
    int c, r;
    for (c = 0, r = 0; c < n; c ++ )
    {
        int t = r;
        for (int i = r; i < n; i ++ )
            if (a[i][c])
                t = i;

        if (!a[t][c]) continue;

        for (int i = c; i <= n; i ++ ) swap(a[r][i], a[t][i]);
        for (int i = r + 1; i < n; i ++ )
            if (a[i][c])
                for (int j = n; j >= c; j -- )
                    a[i][j] ^= a[r][j];

        r ++ ;
    }

    if (r < n)
    {
        for (int i = r; i < n; i ++ )
            if (a[i][n])
                return 2;
        return 1;
    }

    for (int i = n - 1; i >= 0; i -- )
        for (int j = i + 1; j < n; j ++ )
            if (a[i][j])
                a[i][n] ^= a[j][n];

    return 0;
}

int main()
{
    cin >> n;

    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < n + 1; j ++ )
            cin >> a[i][j];

    int t = gauss();

    if (t == 0)
    {
        for (int i = 0; i < n; i ++ ) cout << a[i][n] << endl;
    }
    else if (t == 1) puts("Multiple sets of solutions");
    else puts("No solution");

    return 0;
}

三、时间复杂度

关于高斯消元各步操作的时间复杂度以及证明,后续会给出详细的说明以及证明过程,目前先鸽了。

  • 18
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辰chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值