文章目录
前言
复习acwing算法基础课的内容,本篇为讲解数学知识:博弈论,关于时间复杂度:目前博主不太会计算,先鸽了,日后一定补上。
一、博弈论
一个游戏如何被称为是一个公平的游戏:
1.由两名玩家一人一轮操作
2.在游戏进行的任意时刻,可以执行的合法行动与轮到哪位玩家无关
3.不能行动的玩家输掉了比赛
有关博弈论这里介绍两个状态:
必胜状态:先手进行某一个操作,留给后手是一个必败状态时,对于先手来说是一个必胜状态。即先手可以走到某一个必败状态。
必败状态:先手无论如何操作,留给后手都是一个必胜状态时,对于先手来说是一个必败状态。即先手走不到任何一个必败状态。
二、例题,代码
AcWing 891. Nim游戏
本题链接:AcWing 891. Nim游戏
本博客提供本题截图:
本题分析
假设有n
堆石子,石子的个数分别为:a1,a2,a3,...an
如果a1^a2^a3^...^an != 0
则为先手必胜,反之则为先手必败.
AC代码
#include <iostream>
using namespace std;
int main()
{
int n;
cin >> n;
int res = 0;
while (n -- )
{
int a;
cin >> a;
res ^= a;
}
if (res) puts("Yes");
else puts("No");
return 0;
}
AcWing 892. 台阶-Nim游戏
本题链接:AcWing 892. 台阶-Nim游戏
本博客提供本题截图:
本题分析
如果先手时奇数台阶上的值的异或值为0,则先手必败,反之必胜
AC代码
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010;
int main()
{
int n;
scanf("%d", &n);
int res = 0;
for (int i = 1; i <= n; i ++ )
{
int x;
scanf("%d", &x);
if (i & 1) res ^= x;
}
if (res) puts("Yes");
else puts("No");
return 0;
}
AcWing 893. 集合-Nim游戏
本题链接:AcWing 893. 集合-Nim游戏
本博客提供本题截图:
本题分析
1.Mex运算:
设S表示一个非负整数集合.定义mex(S)为求出不属于集合S的最小非负整数运算,即:
mes(S)=min{x};
例如:S={0,1,2,4},那么mes(S)=3;
2.SG函数
在有向图游戏中,对于每个节点x,设从x出发共有k条有向边,分别到达节点y1,y2,····yk,定义SG(x)的后记节点y1,y2,····
yk的SG函数值构成的集合在执行mex运算的结果,即:
SG(x)=mex({SG(y1),SG(y2)····SG(yk)})
AC代码
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_set>
using namespace std;
const int N = 110, M = 10010;
int n, m;
int s[N], f[M];
int sg(int x)
{
if (f[x] != -1) return f[x];
//记忆化搜索,因为取石子数目的集合是已经确定了的,所以每个数的sg值也都是确定的,如果存储过了,直接返回即可
unordered_set<int> S;
//注意,因为是在函数内部定义的set,所以每次递归中的S是不一样的
for (int i = 0; i < m; i ++ )
{
int sum = s[i];
if (x >= sum) S.insert(sg(x - sum));
//先遍历至终点,然后倒推求sg
}
for (int i = 0; ; i ++ )
if (!S.count(i))
return f[x] = i;
}
int main()
{
cin >> m;
for (int i = 0; i < m; i ++ ) cin >> s[i];
cin >> n;
memset(f, -1, sizeof f);
int res = 0;
for (int i = 0; i < n; i ++ )
{
int x;
cin >> x;
res ^= sg(x);
}
if (res) puts("Yes");
else puts("No");
return 0;
}
AcWing 894. 拆分-Nim游戏
本题链接:AcWing 894. 拆分-Nim游戏
本博客提供本题截图:
本题分析
本题相比于上一题,为一个情况拆分成了多个的小情况,根据sg
函数,我们需要存储的状态为sg(i) ^ sg(j)
AC代码
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_set>
using namespace std;
const int N = 110;
int n;
int f[N];
int sg(int x)
{
if (f[x] != -1) return f[x];
//记忆化搜索
unordered_set<int> S;
for (int i = 0; i < x; i ++ )
for (int j = 0; j <= i; j ++ )//规定j不大于i,避免重复
S.insert(sg(i) ^ sg(j));
for (int i = 0;; i ++ )
if (!S.count(i))
return f[x] = i;
}
int main()
{
cin >> n;
memset(f, -1, sizeof f);
int res = 0;
while (n -- )
{
int x;
cin >> x;
res ^= sg(x);
}
if (res) puts("Yes");
else puts("No");
return 0;
}
三、时间复杂度
关于博弈论各步操作的时间复杂度以及证明,后续会给出详细的说明以及证明过程,目前先鸽了。