轮转数组
给定一个整数数组 nums
,将数组中的元素向右轮转 k
个位置,其中 k
是非负数。
示例 1:
输入: nums = [1,2,3,4,5,6,7], k = 3 输出:[5,6,7,1,2,3,4]
解释: 向右轮转 1 步:[7,1,2,3,4,5,6]
向右轮转 2 步:[6,7,1,2,3,4,5]
向右轮转 3 步:[5,6,7,1,2,3,4]
示例 2:
输入:nums = [-1,-100,3,99], k = 2 输出:[3,99,-1,-100] 解释: 向右轮转 1 步: [99,-1,-100,3] 向右轮转 2 步: [3,99,-1,-100]
提示:
1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
0 <= k <= 105
进阶:
- 尽可能想出更多的解决方案,至少有 三种 不同的方法可以解决这个问题。
- 你可以使用空间复杂度为
O(1)
的 原地 算法解决这个问题吗?
容易想到的是空间复杂度o(n)的方法,就是开辟一个数组空间,然后直接把每个元素最终位置填进去,最后比着再赋值回来。
直接奔着进阶的o(1)与原地要求去了,思路是直接从第一个元素a入手,找到其应该去的下个位置next_idx,存储一下这个位置的元素b,执行nums[next_idx]=a,接着拿着b重复这个过程,这样遍历该数组一遍即可,使用o(1)的空间复杂度。
这里需要处理的是一种特殊情况,即经过k步之后可能又回到了本次循环开始的地方:例如:
1 2 3 4 k=2, 那么1 和 3的位置需要避免死循环
也看到很多人选择逆序列表的做法,确实是个不错的想法,但是没想到...
代码用的信号量比较多,感觉写的有点复杂了...
class Solution:
def rotate(self, nums: List[int], k: int) -> None:
length = len(nums)
if k == 0 or len(nums)==1 or k==length:return None
k = k if k % length == 0 else k % length
change_times = 0 # 交换次数
i_ori = 0 # 本轮交换的初始位置下标
p_nums = nums[0] # 当前元素存储
pp_nums = p_nums # 上一元素存储
inj = (0+k) % length # 下一跳位置索引
while change_times < length:
change_times += 1
if inj == i_ori:
nums[inj] = pp_nums
i_ori = inj+1
inj+=(1+length)%length
p_nums = nums[inj]
pp_nums = p_nums
inj = (inj+k)%length
continue
p_nums = nums[inj]
nums[inj] = pp_nums
pp_nums = p_nums
inj = (inj+k)%length