深度学习④Deep Learning Theory:Generalization

L1​ 范数定义为一个向量所有元素的绝对值之和。对于向量 w 来说,L1 范数表示为:

在机器学习中,

𝐿1正则化的目的是通过最小化这个范数来引导模型选择一个稀疏解,即一个尽可能多的元素为零的解。这在特征选择和防止过拟合中非常有用。

可以将 𝐿1正则化想象成一种机制,它迫使模型尽量少地使用特征。通过限制权重的绝对值和,模型倾向于只保留对结果影响最大的少数特征,而将其他特征的权重压缩为零。这就类似于我们在整理东西时,尽量只保留最重要的东西,把不重要的尽量丢掉。

通过正则化实现泛化——边界最大化

SVM 的目标是找到一个能够最大化边界的超平面,以此来提高模型的泛化能力。

左侧图示描述了一个二元分类问题的最优分离超平面,该超平面将两个特征x1​ 和 x2​ 所组成的样本集进行分类。超平面方程为^T x + b =0,并且在分类时,我们希望最大化这个超平面的边界。即,通过找到一个可以最大化两类数据点间距的超平面,使得数据点能够被尽可能地分开。

边界大小(Margin Size)表明边界大小与权重向量 w 的范数成反比。即, w 越小,边界就越大,这意味着数据点之间的间距更大,从而提高模型的泛化能力

硬边界 SVM:目标是找到一个能够完全分离训练数据的超平面,并且边界大小最大化。这里的正则化项 1/2∥w∥用于防止模型过于复杂。

在实际应用中,数据通常无法被完美分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值