⑥Continual Learning Biological Underpinnings 持续学习的生物学基础

2021年AI100报告提到AI系统在多任务学习方面取得了显著进展,特别是在避免“灾难性遗忘”(即学习新任务时忘记已学任务)的问题上。

报告讨论了持续学习中的一些关键挑战,例如在新任务中应用过去的知识,同时避免遗忘已经学到的内容。

过去几年,在这一领域取得了一些重大进展。新方法的例子包括模拟大脑过程的训练系统,这被称为神经调节过程,以学习打开和关闭网络区域的门控功能,以便在不遗忘的情况下持续学习

持续学习的生物学基础(Kudithipudi等,2022)——终身学习的关键特征

  1. 知识转移和适应Transfer and adaptation(如前向和后向转移)
  2. 克服灾难性遗忘Overcoming catastrophic forgetting(通过正则化、重放、架构调整、提示方法等)
  3. 利用任务相似性Exploiting task similarity 利用这种相似性加速学习过程,从而减少需要学习的新信息量。
  4. 任务无关(不可知)学习Task-agnostic learning 学习新任务时,不依赖于特定任务的信息,而是能够在面对多样化任务时,自适应地进行学习
  5. 噪声容忍度Noise tolerance
  6. 资源效率和可持续性Resource efficiency and sustainability(例如持续预训练LLM)

支持终身学习的生物学机制

1.神经再生(Neurogenesis):

神经再生是指在大脑中生成新神经元的过程。神经再生有助于学习和记忆的形成,特别是在面对新的挑战或环境变化时,通过生成新神经元,大脑可以更好地适应和学习新信息。在人工智能中,这一过程可以类比为动态调整模型结构或增加新的神经元来适应新任务。

2.情景重放(Episodic Replay):

情景重放指的是大脑在休息或睡眠期间回放先前经历过的事件。这有助于巩固记忆,强化已学信息。在机器学习中,这一机制类似于重放记忆或样本,通过回顾和复习已学任务来防止遗忘,增强模型的长期记忆能力。

3.可塑性调节(Metaplasticity):

可塑性调节是指大脑在适应变化时调节突触可塑性的能力。简单来说,它是大脑在学习过程中的“可塑性”的调节机制,这种调节允许大脑在不同环境下灵活学习和适应。在人工智能中,这一机制可以启发如何通过动态调整模型的学习率或正则化参数来优化学习过程。

4.神经调制(Neuromodulation):

神经调制是通过化学物质(如多巴胺、血清素)来调节神经元活动的过程。这种调节在注意力、动机和情绪等方面起着关键作用,从而影响学习过程。在人工智能中,神经调制可以启发如何设计适应性模型,通过外部或内部信号来调整学习策略和网络活动。

5.上下文依赖感知和门控(Context-dependent Perception and Gating):

上下文依赖感知和门控是指大脑根据当前的环境和情境来调整感知和行为的能力。大脑通过选择性地激活或抑制特定神经元来响应不同的情境,从而实现高效的感知和决策。在人工智能中,这一机制可以启发如何在不同任务或数据集上进行上下文感知的模型调优,确保模型在不同任务间的有效切换。

6.分层分布式系统(Hierarchical Distributed Systems):

分层分布式系统指的是大脑信息处理的分层结构和分布式网络。大脑通过不同层次的神经网络来处理信息,从而实现复杂的认知功能。这一结构可以启发人工智能系统设计多层次和分布式的网络结构,以便更好地处理复杂任务和多样化信息。

7.大脑外的认知(Cognition Outside the Brain):

大脑外的认知指的是包括身体在内的整个生物体如何参与认知过程。认知不仅限于大脑,还包括身体的感觉和运动反馈等,这些信息共同影响学习和决策。在人工智能中,这一概念可以启发设计包括传感器和执行器在内的智能系统,以实现更全面的环境感知和互动。

8.可重构生物体(Reconfigurable Organisms):

可重构生物体是指生物体能够根据环境变化重新配置自身的结构或功能。例如,一些生物体可以在受伤后再生身体部位或改变行为模式。在人工智能中,这一机制可以启发如何设计可动态调整和适应环境变化的模型架构。

9.多感官整合(Multisensory Integration):

多感官整合指的是大脑如何将来自不同感官的信息整合在一起,以形成统一的感知和认知体验。通过整合视觉、听觉、触觉等多种感官信息,大脑能够更准确地理解和响应环境。在人工智能中,这一机制可以启发多模态学习系统的设计,使模型能够整合来自不同类型数据的信息,从而增强理解能力。

讨论点

Paper’s hypothesis

是否认同论文的中心假设,即终身/持续机器学习系统需要实现某些生物系统天然具备的能力,才能真正实现持续学习?并问及生物学类比在持续学习中的适用性。Do you agree with the central hypothesis of the paper that lifelong/continual machine learning systems need to achieve certain capabilities which are natural to biological systems in order to be really continual/lifelong?

论文的中心假设是,要使机器学习系统真正实现持续或终身学习,它们需要具备某些类似于生物系统的能力。这意味着,生物学中天然存在的一些学习和适应机制可能对开发终身学习的人工智能系统至关重要。

Paper’s hypothesis

这一页提出了另一个讨论点:是否认为持续学习与生物系统之间的能力链接是充分且完整的?是否有可能缺少某些能力?并问及是否存在其他有用的类比,除了生物系统之外。

Do you think that the link between capabilities in lifelong/continual machine learning and biological systems is sufficient and complete?

What capabilities could be missing?

Would there be other useful analogies outside biological systems?

·虽然持续学习机器学习系统与生物系统之间的能力联系在某些方面是充分的,但还不够完整。生物系统展示了卓越的长期学习和适应能力,例如神经可塑性、情景重放、任务无关学习等。然而,人工智能系统面对的许多挑战,如大规模并行计算、高维度数据处理,以及在不同环境下保持一致性能等,可能无法通过简单模仿生物机制来完全解决。生物系统的学习和适应能力是经过数百万年进化而来,人工系统在很短的时间内要达到类似的能力,需要不仅仅依赖于生物类比

·1)大规模并行计算能力:现代计算系统能够在极短时间内处理海量数据,而生物系统(例如人脑)虽然有惊人的并行处理能力,但在处理如此大规模数据时,效率可能不如人工系统。这种能力在持续学习中的数据处理环节尤其重要。

2)数据传输和存储能力:生物系统的数据存储和传输高度分布式且难以量化,而现代计算系统具有高度集中的存储架构,可以实现快速的数据存取和传输,这对于处理大量历史数据和实时更新的系统至关重要。

3)透明度和可解释性:生物系统的复杂性往往使其学习过程难以解释,而在机器学习领域,尤其是在需要高透明度的应用中(如医疗诊断、法律决策),模型的可解释性非常关键。这一能力在生物系统类比中可能被忽视。

·社会系统类比:社会网络中的合作与竞争、文化演化等机制可以为多代理系统中的学习和协作提供启发。这些系统通过代理之间的相互作用实现群体智能,可以在AI中探索多智能体协作学习的潜力。比如遗传算法用于调整神经网络的结构和超参数,从而提升模型性能,又比如

蚁群算法(Ant Colony Optimization, ACO):模仿蚂蚁寻找最短路径的机制,用于解决路径规划问题。

粒子群优化(Particle Swarm Optimization, PSO):模仿鸟群飞行寻找食物的行为,用于全局优化问题。

模拟退火(Simulated Annealing, SA):模拟物理退火过程中,温度逐渐下降时粒子寻找能量最低状态的过程,用于全局最优化问题

工程系统类比:如自适应控制系统,能够根据环境的变化自动调整自身的参数,从而实现稳定的控制效果。这与持续学习中的自适应能力有很大的相似性,能够为设计更灵活的AI系统提供启发。

Applications/Development

How could the proposed framework be applied to the development of continual learning systems in artificial intelligence?

What implications does this framework have for improving current machine learning architectures, like Transformer networks, in terms of knowledge transfer or other lifelong learning capabilities?

如何将提出的框架应用于人工智能中的持续学习系统开发

提出的框架旨在将生物系统的终身学习机制应用到人工智能(AI)中的持续学习系统开发中。以下是一些具体的应用方法:

  1. 引入神经可塑性和神经调制机制:在人工神经网络中,可以模拟生物神经元的可塑性,通过动态调整网络的权重和连接来应对新任务的学习。这类似于使用可变学习率或正则化方法,自动调整模型的参数以适应新的学习环境。

  1. 使用情景重放技术:在持续学习中,通过定期重放之前学过的任务数据,模型可以保持对旧任务的记忆,避免灾难性遗忘。这个方法类似于生物大脑在睡眠时回放记忆的过程,可以通过类似于生成对抗网络(GAN)或自编码器的架构来实现数据的重放和增强。

  1. 实现上下文感知的学习策略:利用生物系统中的上下文依赖感知机制,可以设计出能够根据环境动态调整的模型。例如,通过在网络中引入门控机制,使模型能够根据任务的不同选择性地激活或抑制部分网络,优化学习过程。

  1. 分层分布式系统设计:借鉴大脑的分层结构,开发分层神经网络或多级学习系统,可以更好地处理复杂和多样化的任务。每一层或每一级网络可以专注于不同类型的信息处理,从而提高整体系统的学习能力。

2. 对当前机器学习架构(如Transformer网络)的影响

提出的框架对现有机器学习架构,尤其是Transformer网络,可能有以下几方面的影响:

增强知识转移能力:Transformer网络通过自注意力机制可以在不同任务之间共享知识,但在持续学习中仍可能面临灾难性遗忘的问题。引入类似于情景重放和神经调制的机制,可以帮助Transformer网络在学习新任务时保持对旧任务的记忆,从而增强知识转移的效果。

提高模型的任务无关学习能力:通过上下文感知的门控机制,Transformer网络可以根据不同任务的需求动态调整其内部结构,减少任务间干扰。这样可以在面对新的任务时,自适应地调整模型参数,而不影响已学任务的表现。

优化模型的资源利用和可持续性:在大规模语言模型的持续预训练中,可以借鉴生物系统中的资源效率机制,通过减少重复计算和高效使用存储资源,提升模型的可持续性。这可以通过对模型参数的压缩、智能缓存和数据流的优化实现。

引入多感官整合机制:在多模态学习中,Transformer网络可以通过引入多感官整合机制,更好地处理和融合来自不同源的数据。这种机制可以帮助模型在处理多样化和异构数据时,增强对环境的理解和任务的执行能力。

Ethical Implications

What ethical considerations arise when designing machine learning systems inspired by human cognition and learning processes?

1.隐私和数据安全

问题:机器学习系统往往依赖大量数据进行训练,包括个人信息、行为数据和生物识别数据。当这些系统模仿人类认知时,可能需要采集和处理更敏感的个人数据。

考虑:如何确保数据的收集、存储和使用过程中,个人隐私不被侵犯?如何防止数据被滥用或泄露?在使用个人数据时,应遵守严格的隐私保护法规(如GDPR),并采用加密、匿名化等技术手段保护数据安全。

2. 决策透明度和可解释性

问题:受人类认知启发的机器学习系统可能会做出复杂的决策,这些决策过程往往不易被理解或解释。这会导致使用者对系统产生不信任,尤其是在关键领域如医疗诊断、司法判决和金融决策中。

考虑:如何确保系统的决策过程透明、可解释?是否应该让系统的使用者和受影响者了解决策的依据和过程?在设计时,考虑引入可解释性模型或提供可视化工具,以增强用户对系统的理解和信任。

3. 公平性与偏见

问题:如果机器学习系统学习并模仿人类的认知过程,它们可能继承或放大人类的偏见和歧视。例如,在处理涉及种族、性别、年龄等敏感因素的数据时,系统可能会出现不公平的结果。

考虑:如何检测和消除系统中的偏见,确保其决策和行为公平公正?是否需要在设计和训练阶段加入额外的机制,以监控和修正潜在的偏见?对于涉及敏感信息的应用,必须进行严格的偏见审查和公平性测试。

4. 伦理责任和问责机制

问题:当机器学习系统被广泛应用于社会决策中,尤其是在模仿人类认知时,系统可能会对个体和社会产生重大影响。如果系统做出了错误的决策或行为,谁应当承担责任?

考虑:如何明确系统开发者、使用者和相关利益方的责任?是否需要制定相关的伦理准则和法律框架,以规范系统的设计和使用?在系统部署之前,应考虑建立清晰的问责机制,并确保系统具有纠错和应急处理的能力。

5. 伦理与道德的模拟

问题:如果机器学习系统被设计用来模仿人类的道德和伦理决策,可能会面临如何定义“正确”或“道德”的挑战。这涉及到复杂的伦理学问题,如不同文化、社会背景下的道德差异。

考虑:如何在系统中编程或模拟人类的道德标准?谁来决定这些标准?在涉及伦理决策的应用中,如自动驾驶汽车或医疗决策支持系统,是否应该引入多方参与的伦理审查和讨论,确保系统的决策符合广泛接受的道德准则。

6. 依赖性与去人性化

问题:随着越来越多的任务被自动化和机器学习系统接管,人们可能会逐渐依赖这些系统,从而削弱自身的决策能力和责任感。同时,过度依赖机器学习系统可能导致人类互动的减少和去人性化的风险。

考虑:如何在使用机器学习系统时平衡自动化与人类决策的角色?是否应当保留人类在关键决策中的核心地位,并防止对系统的过度依赖?在设计时,需要考虑如何增强人机协作而非完全替代。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值