ADMM算法

什么是ADMM算法?

ADMM算法,全称为交替方向乘子法(Alternating Direction Method of Multipliers),是一种用于解决优化问题的迭代算法,特别是那些可以分解为多个子问题的优化问题。ADMM结合了拉格朗日乘子法和分裂方法的特点,通过交替优化原问题的分裂子问题和更新乘子来逼近全局最优解。它在处理大规模和分布式优化问题时特别有效,广泛应用于机器学习、信号处理、统计学习、图像处理等领域。

ADMM算法的基本思想是将一个复杂的优化问题分解为几个更简单的子问题,这些子问题可以更容易或更高效地求解。通过交替求解这些子问题并更新对应的乘子,ADMM能够在保证收敛性的同时,高效地找到问题的解。

示例:线性回归问题

考虑一个线性回归问题,我们的目标是最小化以下目标函数:

min ⁡ x 1 2 ∥ A x − b ∥ 2 2 + λ ∥ x ∥ 1 \min_x \frac{1}{2}\|Ax - b\|^2_2 + \lambda\|x\|_1 xmin21Axb22+λx1

其中,(A)是一个给定的数据矩阵,(b)是观测向量,(\lambda)是正则化参数,(|x|_1)是(x)的L1范数,用于促进解的稀疏性。

问题重写

我们将原始问题重写为等价的约束优化问题:

min ⁡ x , z 1 2 ∥ A x − b ∥ 2 2 + λ ∥ z ∥ 1 subject to x − z = 0 \min_{x,z} \frac{1}{2}\|Ax - b\|^2_2 + \lambda\|z\|_1 \quad \text{subject to} \quad x - z = 0 x,zmin

### ADMM算法在Matlab中的实现 ADMM(Alternating Direction Method of Multipliers),即交替方向乘子法,是一种用于解决大规模凸优化问题的有效方法。该方法通过引入辅助变量和拉格朗日乘子来分解复杂的目标函数,从而使得原问题可以被更高效地求解。 #### ADMM基本原理 ADMM的核心思想在于将原始的大规模约束最优化问题转化为一系列较小的子问题,并利用增广拉格朗日函数来进行迭代更新。对于给定的一个标准形式的线性规划问题: \[ \begin{aligned} & \underset{x}{\text{minimize}} & & f(x)+g(z) \\ & \text{subject to} && Ax+Bz=c, \end{aligned} \] 其中 \(f\) 和 \(g\) 是闭合且适当扩展实值函数;\(A, B\) 为矩阵;而向量 \(c\) 表示常数项,则对应的ADMM更新规则如下所示[^1]: - **x-update**: 对于固定的 \(z^{k}\),以及当前估计的拉格朗日乘子 \(\lambda ^ { k }\), 解决下列二次规划问题得到新的 \(x^{(k+1)}\): \[ x^{(k+1)}=\arg \min _{x}(f(x)+(ρ / 2)\|Ax+B z^{(k)}-(c-\frac{\lambda^{(k)}}{\rho}) \|_{2}^{2}) \] - **z-update**: 类似地,在固定住最新的 \(x^{(k+1)}\) 后计算下一个 \(z^{(k+1)}\) \[ z^{(k+1)}= \operatorname*{arg min}_{z} g(z)+(ρ/2)\left\|\mathrm{~B} z+c-A x^{(k+1)}+\frac{\lambda^{(k)}}{\rho}\right\|_{2}^{2} \] - **dual update (拉格朗日乘子)**: \[ λ^{(k+1)}=λ^{(k)}+ ρ(Ax^{(k+1)} + Bz^{(k+1)}− c ) \] 这里 \(\rho>0\) 称作惩罚参数,它控制着违反约束条件的成本大小。 #### Matlab代码示例 下面给出一段简单的MATLAB代码片段,展示了如何使用上述提到的方法去处理具体的优化任务。这段代码实现了普通的高斯-赛德尔迭代版本的ADMM算法[^2]。 ```matlab function [X,Z,LAMBDA,obj_history,r_norm,s_norm,eps_pri,eps_dual] = admm_gauss_seidel() % 初始化输入数据... n = ...; m = ...; A = rand(m,n); b = A * ones(n,1); MAX_ITER = 1000; ABSTOL = 1e-4; RELTOL = 1e-2; % 定义目标函数及其梯度 fun_f = @(x)(sum((abs(x)).^2)/2); % 假设f(x)=||x||²/2作为例子 grad_fun_f = @(x)x; % 初始设置 rho = 1; Z = zeros(size(b)); LAMBDA = Z; obj_history = []; r_norm = []; s_norm = []; eps_pri = []; eps_dual = []; for k = 1:MAX_ITER % 更新 X X = proximal_operator(@(u)(fun_f(u) ... + rho/2 * norm(A*u - b + Z - LAMBDA/rho)^2),zeros(n,1)); % 更新 Z 使用 Gauss-Seidel 方式 for i = 1:m temp(i) = soft_thresholding(X(i)*A(i,:)'+LAMBDA(i)/rho,... abs(B(i,:))*inv(rho*B'*B)); end Z = reshape(temp,m,[]); % 更新 Lambda LAMBDA = LAMBDA + rho*(A*X - b + Z); % 记录历史记录以便后续分析收敛情况 obj_history(k) = fun_f(X) + sum(abs(Z)); r_norm(k) = norm(A*X-b+Z,'fro'); s_norm(k) = norm(-rho*A'*(Z-Z_prev),'fro'); eps_pri(k) = sqrt(length(b)) * ABSTOL + RELTOL * max(norm(A*X,'fro'),norm(Z,'fro')); eps_dual(k) = sqrt(length(b)) * ABSTOL + RELTOL * norm(rho*A','fro') * norm(LAMBDA-LAMBDA_prev,'fro'); if all([r_norm(k)<eps_pri(k),s_norm(k)<eps_dual(k)]) break; end end plot(obj_history,'.-'); title('Objective Value vs Iteration Number'); xlabel('Iteration number'); ylabel('Value of objective function') function y = proximal_operator(f,x) options.MaxIter = 500; [~,y] = quadprog(diag(repmat(eye(numel(x)),size(x))),[],[],[],[],[],lb,[],ub,f,options); end function out = soft_thresholding(a,kappa) out = sign(a).*max(abs(a)-kappa,0); end ``` 此段代码仅提供了一个基础框架,实际应用时需根据具体应用场景调整相应的部分,比如定义不同的 `fun_f` 函数代表特定的任务需求等。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值