1.中序遍历
中序遍历是二叉树的一种遍历方式,它先遍历左子树,再遍历根节点,最后遍历右子树。而我们二叉搜索树保证了左子树的节点的值均小于根节点的值,根节点的值均小于右子树的值,因此中序遍历以后得到的序列一定是升序序列(递增序列)
class Solution {
public boolean isValidBST(TreeNode root) {
Deque<TreeNode> stack = new LinkedList<TreeNode>();
double inorder = -Double.MAX_VALUE;
while (!stack.isEmpty() || root != null) {
while (root != null) {
stack.push(root);
root = root.left;
}
root = stack.pop();
// 如果中序遍历得到的节点的值小于等于前一个 inorder,说明不是二叉搜索树
if (root.val <= inorder) {
return false;
}
inorder = root.val;
root = root.right;
}
return true;
}
}
- 二叉搜索树与双向链表
排序链表: 节点应从小到大排序,因此应使用 中序遍历 “从小到大”访问树的节点。
双向链表: 在构建相邻节点的引用关系时,设前驱节点 pre 和当前节点 cur ,不仅应构建 pre.right = cur ,也应 构建 cur.left = pre
循环链表: 设链表头节点 head 和尾节点 tail ,则应构建 head.left = tail 和 tail.right = head 。
dfs(cur): 递归法中序遍历;
终止条件: 当节点 cur 为空,代表越过叶节点,直接返回;
递归左子树,即 dfs(cur.left) ;
构建链表:
1.当 pre 为空时: 代表正在访问链表头节点,记为 head ;
2.当 pre 不为空时: 修改双向节点引用,即 pre.right = cur , cur.left = pre ;
3.保存 cur : 更新 pre = cur ,即节点 cur 是后继节点的 pre ;
递归右子树,即 dfs(cur.right) ;
treeToDoublyList(root):
1.特例处理: 若节点 root 为空,则直接返回;
2.初始化: 空节点 pre ;
3.转化为双向链表: 调用 dfs(root) ;
3.构建循环链表: 中序遍历完成后,head 指向头节点, pre 指向尾节点,因此修改 head 和 pre 的双向节点引用即可;
3.返回值: 返回链表的头节点 head 即可;