目前我对卷积层只能由一个大概的了解
类似于下图的这种情况
torch.nn.Conv2d()
首先看下官方文档
官方文档
torch.nn.functional.conv2d()
torch.nn.functional.conv2d(input,filters,bias,stride,padding,dilation,groups)
返回值:一个Tensor变量
作用:在输入图像input中使用filters做卷积运算
参数的具体意义:
input代表输入图像的大小(minibatch,in_channels,H,W),是一个四维tensor | |
---|---|
filters代表卷积核的大小(out_channels,in_channe/groups,H,W),是一个四维tensor | |
---|---|
bias代表每一个channel的bias,是一个维数等于out_channels的tensor | |
---|---|
stride是一个数或者一个二元组(SH,SW),代表纵向和横向的步长 | |
---|---|
padding是一个数或者一个二元组(PH,PW ),代表纵向和横向的填充值 | |
---|---|
dilation是一个数,代表卷积核内部每个元素之间间隔元素的数目 | |
---|---|
groups是一个数,代表分组卷积时分的组数,特别的当groups = in_channel时,就是在做逐层卷积(depth-wise conv) | |
---|---|
示例1:
import torch
import torch.nn.functional as F
input = torch.tensor([[1,2,0,3,1],
[0,1,2,3,1],
[1,2,1,0,0],
[5,2,3,1,1],
[2,1,0,1,1]])
kernel = torch.tensor([[1,2,1],
[0,1,0],
[2,1,0]])
input = torch.reshape(input,(1,1,5,5))
kernel = torch.reshape(kernel,(1,1,3,3))
output=F.conv2d(input,kernel,stride=1)
print(output)
输出:
tensor([[[[10, 12, 12],
[18, 16, 16],
[13, 9, 3]]]])
以上结果就是卷积的一个效果
是这样计算的
一个是数为10,就是卷积核在初始位置与
[[1,2,0],
[0,1,2],
[1,2,1]]
重合,所以1x1+2x2+1x1+2x1+2x1=10
然后因为stride=1
,所以他会往右移动一格然后再次计算
[[2,0,3],
[1,2,3],
[2,1,0]]
等于1x2+1x3+1x2+2x2+1x1=12
如果向右移动到最后就会向下移动stride个单位再从最左边开始
比如输出结果的第二行的第一行
卷积核就会与下述列表卷积乘积
[[0,1,2],
[1,2,1],
[5,2,3]]
结果等于2x1+1x2+1x2+2x5+1x2=18
注意:如果stride为多少,向下就移动几个单位
示例2:
若stride为2
import torch
import torch.nn.functional as F
input = torch.tensor([[1,2,0,3,1],
[0,1,2,3,1],
[1,2,1,0,0],
[5,2,3,1,1],
[2,1,0,1,1]])
kernel = torch.tensor([[1,2,1],
[0,1,0],
[2,1,0]])
input = torch.reshape(input,(1,1,5,5))
kernel = torch.reshape(kernel,(1,1,3,3))
output=F.conv2d(input,kernel,stride=2)
print(output)
输出
tensor([[[[10, 12],
[13, 3]]]])
即每次移动两个单位
示例3:
如果加上参数padding
为1,就是在图片的外围填充一个单位,单位里数字默认为0,也可以利用参数padding_mod
来进行修改,就是下图这种效果
import torch
import torch.nn.functional as F
input = torch.tensor([[1,2,0,3,1],
[0,1,2,3,1],
[1,2,1,0,0],
[5,2,3,1,1],
[2,1,0,1,1]])
kernel = torch.tensor([[1,2,1],
[0,1,0],
[2,1,0]])
input = torch.reshape(input,(1,1,5,5))
kernel = torch.reshape(kernel,(1,1,3,3))
output=F.conv2d(input,kernel,stride=1,padding=1)
print(output)
输出:
tensor([[[[ 1, 3, 4, 10, 8],
[ 5, 10, 12, 12, 6],
[ 7, 18, 16, 16, 8],
[11, 13, 9, 3, 4],
[14, 13, 9, 7, 4]]]])
torch.nn.Conv2d()
了解下torch.nn.Conv2d()函数里面的参数设置
torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
卷积操作小实战:
利用CIFAR10
上的彩色数据集每64张图片来进行卷积操作,然后利用tensorboard进行可视化操作
Test中conv1中按自己需要设定
注意:
1.channels
的个数需要设定,利用torch.reshape()
进行一个变换,但是这种方法可能不太好,目前我也只会这种方法
2.在add_image
时需要设定下dataformats
的格式,比如:dataformats="NCHW"
,不设定格式可能会出错,反正我的电脑不加就报错啦。
import torch
import torch.nn.functional as F
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.nn import Conv2d
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("dataset2",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=64)
class Test(nn.Module):
def __init__(self):
super(Test, self).__init__()
self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)
def forward(self,x):
x=self.conv1(x)
return x
test = Test()
writer = SummaryWriter("logs")
step=1
for data in dataloader:
imgs,targets = data
output = test(imgs)
writer.add_image("input",imgs,step,dataformats="NCHW")
output = torch.reshape(output,(-1,3,30,30))
writer.add_image("output",output,step,dataformats="NCHW")
step+=1
writer.close()
tensorboard可视化: