torch.nn.functional.conv2d的用法

torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) → Tensor

在这里插入图片描述

注意:!!!
在这里插入图片描述

对F.conv2d一样适用

补充:在这里补充一个多维度卷积的公式:

在这里插入图片描述
输入是:h×w×nc
则卷积核应该与输入保持一样的维度:f×f×nc
输出则取决于卷积核的个数:nc’
h’=(h+2padding-f)/stride+1
w’=(w+2padding-f)/stride+1

关于group的理解!!

在这里插入图片描述

我自己关于F.conv2d和nn.Conv2d的一点点理解:
nn.Conv2d规定了输入通道、输出通道、以及卷积核的大小,使用的时候生成(输出通道的个数)的卷积核,多用于网络搭建时使用。因为卷积核还没确定,通过网络不断训练得到卷积核的参数。

F.conv2d需要传入具体的卷积核!!传入的卷积核需要知道(输出通道也就是有几个卷积核、卷积核的通道个数也就是与输入图像相同的通道数、size),是具体的已知的卷积核。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值