- 博客(6)
- 收藏
- 关注
原创 Mac系统word文档中的图片打开后乱码
word文档打开后里面的图片乱码如上图所示,最终通过下载低版本的word得以解决。下载版本:2021.08.10。
2023-07-18 22:05:36 2686 1
原创 【计算机视觉----相机标定】
相机标定是计算机视觉中的一个重要问题,它的目的是确定相机的内部参数和外部参数,以建立从相机到图像的映射关系。相机标定的算法通常分为两个步骤:第一步是检测棋盘格角点并计算相机的内部参数,第二步是计算相机的外部参数。第一步:检测棋盘格角点并计算相机的内部参数棋盘格标定法是一种常用的相机标定方法,它基于在棋盘格上已知的角点坐标和实际测量的角点在图像中的位置,通过最小化重投影误差来求解相机的内部参数。具体步骤如下:第二步:计算相机的外部参数在得到相机的内部参数后,可以使用PnP算法计算相机的外部参数。PnP算法
2023-05-25 20:56:57 4188
原创 multi-band blending算法
*多波段融合(multi-band blending)**是一种将多个图像或视频的不同频段进行融合的技术。该技术通常用于图像或视频合成、图像增强等领域。其核心思想是将不同频段的图像或视频进行分解,然后对每个频段进行不同的处理,最后再将处理后的不同频段合成为最终的图像或视频。具体步骤如下:将原始图像或视频进行分解,得到不同频段的图像或视频。对每个频段进行不同的处理,例如可以对低频段进行平滑处理,对高频段进行锐化处理,以达到增强图像或视频的效果。对每个处理后的频段进行重建,得到处理后的图像或视频。
2023-05-24 16:13:38 908
原创 《Python计算机视觉》——图像到图像的映射
在利用SIFT算法进行特征点匹配时,我们会发现常常存在特征点匹配错误的现象,这些匹配错误的点将会对图像拼接的效果产生很大的影响,所以我们需要利用一定的方法剔除匹配错误的特征点,我们常会用到RANSAC算法来筛选SIFT匹配的特征点以减少误差,这个算法现在在图像配准以及拼接上得到了广泛的应用。给定任意图像的标记点,通过将这些点进行三角剖分,然后使用仿射扭曲来扭曲每个三角形,我么可以将图像和另一幅图像的对应标记点扭曲对应。对于图像平面内(甚至是三维中的点)的点,齐次坐标是个非常有用的表示方式。
2023-05-09 18:16:49 703 1
原创 《Python计算机视觉》——局部图像描述子
SIFT特征包括兴趣点检测器和描述子。SIFT描述子具有非常强的稳健性,这在很大程度上也是SIFT特征能够成功和流行的主要原因。==SIFT特征对于尺度、旋转和亮度都具有不变性==,因此,它可以用于三维视角和噪声的可靠匹配。
2023-04-13 09:48:04 432
原创 《Python计算机视觉》——基本的图像操作和处理
PIL(Python Imaging Library,图像处理类库)提供了通用的图像处理功能,以及大量有用的基本图像操作,比如图像缩放、裁剪、旋转、颜色转换等。直方图均衡化是指将一幅图像的灰度直方图变平,使变换后的图像中每个灰度值的分布概率都相同。在对图像作进一步处理之前,直方图均衡化通常是对图像灰度值进行归一化的一个非常好的方法,并且可以增强图像的对比度。利用PIL中的函数,我们可以从大多数图像格式的文件中读取数据,然后写入最常见的图像格式文件中。图像的高斯模糊是非常经典的图像卷积例子。
2023-03-02 16:20:43 1033 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人