给定一个长度为 n
的整数数组 height
。有 n
条垂线,第 i
条线的两个端点是 (i, 0)
和 (i, height[i])
。
找出其中的两条线,使得它们与 x
轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7] 输出:49 解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1] 输出:1
提示:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
一:暴力求解,超时,通过测试用例:55/62
class Solution {
public:
int maxArea(vector<int>& height) {
int n=height.size();
int MaxA=0;
for(int i=0;i<n-1;i++){
for(int j=i+1;j<n;j++){
int length=j-i;
int width=min(height[i],height[j]);
int area=length*width;
if(area>MaxA) MaxA=area;
}
}
return MaxA;
}
};
二:(建议画图理解)还是使用双指针,但是改变移动策略,由于要使面积最大就要尽可能地使长和宽最大,因此一开始让i指向最左,j指向最右,使得Length最大;此时若还存在面积更大的2那只肯可能是在宽度上调整,宽度更高才能使面积更大,因此选择移动两个指针中高度较低的那个(i向右移,j向左移),当两个指针重合时就能保证找到面积最大的。时间复杂度为O(n).
class Solution {
public:
int maxArea(vector<int>& height) {
int n=height.size();
int i=0;
int j=n-1;
int length=j-i;
int width=min(height[i],height[j]);
int MaxA=length*width;
int lower=0;
int area=0;
while(i<j){
if(min(height[i],height[j])==height[i]){//i对应的高度较低,i指针向右移
i++;
}
else{
j--;
}
width=min(height[i],height[j]);
length=j-i;
area=length*width;
if(area>MaxA)MaxA=area;
}
return MaxA;
}
};