力扣Hot100-T5乘最多水的容器

给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。

找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

返回容器可以储存的最大水量。

说明:你不能倾斜容器。

示例 1:

输入:[1,8,6,2,5,4,8,3,7]
输出:49 
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。

示例 2:

输入:height = [1,1]
输出:1

提示:

  • n == height.length
  • 2 <= n <= 105
  • 0 <= height[i] <= 104

一:暴力求解,超时,通过测试用例:55/62

class Solution {
public:
    int maxArea(vector<int>& height) {
        int n=height.size();
        int MaxA=0;
        for(int i=0;i<n-1;i++){
            for(int j=i+1;j<n;j++){
                int length=j-i;
                int width=min(height[i],height[j]);
                int area=length*width;
                if(area>MaxA) MaxA=area;

            }
        }

        
       return MaxA;
    }
};

二:(建议画图理解)还是使用双指针,但是改变移动策略,由于要使面积最大就要尽可能地使长和宽最大,因此一开始让i指向最左,j指向最右,使得Length最大;此时若还存在面积更大的2那只肯可能是在宽度上调整,宽度更高才能使面积更大,因此选择移动两个指针中高度较低的那个(i向右移,j向左移),当两个指针重合时就能保证找到面积最大的。时间复杂度为O(n).

class Solution {
public:
    int maxArea(vector<int>& height) {
        int n=height.size();
        int i=0;
        int j=n-1;
        int length=j-i;
        int width=min(height[i],height[j]);
        int MaxA=length*width;
        int lower=0;
        int area=0;
        while(i<j){
            if(min(height[i],height[j])==height[i]){//i对应的高度较低,i指针向右移
            i++;

            }
            else{
                j--;
            }
            width=min(height[i],height[j]);
            length=j-i;
            area=length*width;
            if(area>MaxA)MaxA=area;

            



        }
      
        
       return MaxA;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

半截詩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值