针对矩阵的旋转问题

一般针对n × n矩阵的旋转问题时,我们一般有两种方法:

目录

一、开辟一个新的矩阵来保存新的矩阵

二、使用原地修改,对称的方法

给出例题:

给定一个 n × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度

你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。

输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[[7,4,1],[8,5,2],[9,6,3]]

一、开辟一个新的矩阵来保存新的矩阵

按照类似的规律,对于矩阵中第 i 行的第 j 个元素,在旋转后,它出现在倒数第 i 列的第 j 个位置。

def retate(matrix):
    n = len(matrix)
    # Python 这里不能 matrix_new = matrix 或 matrix_new = matrix[:] 因为是引用拷贝
    matrix_new = [[0] * n for _ in range(n)]
    for i in range(n):
       for j in range(n):
           matrix_new[j][n - i - 1] = matrix[i][j]
    # 不能写成 matrix = matrix_new
    matrix[:] = matrix_new

时复杂度O(n^2) 空间复杂度O(n^2)

二、使用原地修改,对称的方法

 

 我们观察样例,找规律发现:先以左上-右下对角条线为轴做翻转,再以中心的竖线为轴做翻转,就可以翻转90度。

实现代码:

def rotate(matrix):
    n = len(matrix)
    for i in range(n):
        for j in range(i):
            matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j]

    for i in range(n):
        left = 0
        right = n - 1
        while left < right:
            matrix[i][left], matrix[i][right] = matrix[i][right], matrix[i][left]
            left += 1
            right -= 1

时间复杂度O(n^2) 空间复杂度O(1)

PS:类似的180° 、270°也可以使用以上类似的两种方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq_52242662

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值