一般针对n × n矩阵的旋转问题时,我们一般有两种方法:
目录
给出例题:
给定一个 n × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。
你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]] 输出:[[7,4,1],[8,5,2],[9,6,3]]
一、开辟一个新的矩阵来保存新的矩阵
按照类似的规律,对于矩阵中第 i 行的第 j 个元素,在旋转后,它出现在倒数第 i 列的第 j 个位置。
def retate(matrix):
n = len(matrix)
# Python 这里不能 matrix_new = matrix 或 matrix_new = matrix[:] 因为是引用拷贝
matrix_new = [[0] * n for _ in range(n)]
for i in range(n):
for j in range(n):
matrix_new[j][n - i - 1] = matrix[i][j]
# 不能写成 matrix = matrix_new
matrix[:] = matrix_new
时复杂度O(n^2) 空间复杂度O(n^2)
二、使用原地修改,对称的方法
我们观察样例,找规律发现:先以左上-右下对角条线为轴做翻转,再以中心的竖线为轴做翻转,就可以翻转90度。
实现代码:
def rotate(matrix):
n = len(matrix)
for i in range(n):
for j in range(i):
matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j]
for i in range(n):
left = 0
right = n - 1
while left < right:
matrix[i][left], matrix[i][right] = matrix[i][right], matrix[i][left]
left += 1
right -= 1
时间复杂度O(n^2) 空间复杂度O(1)
PS:类似的180° 、270°也可以使用以上类似的两种方法。