面向面试的机器学习知识点(3)——回归模型

本文介绍了回归分析的基本概念,重点探讨了线性回归、多项式回归和岭回归三种经典回归模型。讲述了它们的定义、目的、适用场景及处理多重共线性的方法,并通过Python示例展示了模型的实现。同时,对比了回归模型与分类模型的区别。
摘要由CSDN通过智能技术生成

省流版:

本期内容:三种经典且主流的回归模型:线性回归、多项式回归、岭回归


什么是回归分析?

定义:

回归分析是一种统计方法,用于研究自变量(独立变量)与因变量(依赖变量)之间的关系。它通过建立一个数学模型来描述自变量与因变量之间的关系,以便对未知数据进行预测和解释。

目的:

  • 确定自变量与因变量之间的关系。
  • 对因变量进行预测。
  • 了解自变量对因变量的影响程度。
  • 探索数据中的模式和趋势。

适用场合:

  • 用于预测和解释现象,如销售量、股票价格、房价等。
  • 用于分析实验数据,以确定自变量对因变量的影响。
  • 用于探索数据集中的相关关系,帮助做出决策。

分类:

  • 线性回归(Linear Regression): 自变量与因变量之间的关系被假设为线性关系。
  • 多元回归(Multiple Regression): 包含多个自变量的回归分析。
  • 岭回归(Ridge Regression): 用于解决多重共线性问题的一种回归分析方法。
  • Lasso回归(Lasso Regression): 在多元回归中用于进行特征选择的一种回归分析方法。
  • 多项式回归(Polynomial Regression): 自变量与因变量之间的关系被假设为多项式关系的一种回归分析方法。
  • 非线性回归(Nonlinear Regression): 自变量与因变量之间的关系被假设为非线性关系的一种回归分析方法。

回归模型和分类模型有哪些异同?

总的来说,回归模型和分类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小井正在努力中

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值