省流版:
本期内容:三种经典且主流的回归模型:线性回归、多项式回归、岭回归
什么是回归分析?
定义:
回归分析是一种统计方法,用于研究自变量(独立变量)与因变量(依赖变量)之间的关系。它通过建立一个数学模型来描述自变量与因变量之间的关系,以便对未知数据进行预测和解释。
目的:
- 确定自变量与因变量之间的关系。
- 对因变量进行预测。
- 了解自变量对因变量的影响程度。
- 探索数据中的模式和趋势。
适用场合:
- 用于预测和解释现象,如销售量、股票价格、房价等。
- 用于分析实验数据,以确定自变量对因变量的影响。
- 用于探索数据集中的相关关系,帮助做出决策。
分类:
- 线性回归(Linear Regression): 自变量与因变量之间的关系被假设为线性关系。
- 多元回归(Multiple Regression): 包含多个自变量的回归分析。
- 岭回归(Ridge Regression): 用于解决多重共线性问题的一种回归分析方法。
- Lasso回归(Lasso Regression): 在多元回归中用于进行特征选择的一种回归分析方法。
- 多项式回归(Polynomial Regression): 自变量与因变量之间的关系被假设为多项式关系的一种回归分析方法。
- 非线性回归(Nonlinear Regression): 自变量与因变量之间的关系被假设为非线性关系的一种回归分析方法。
回归模型和分类模型有哪些异同?
总的来说,回归模型和分类