误差补偿

这个教程详细介绍了从数据预处理到模型构建、训练、评估以及部署的全过程,特别是针对误差补偿问题。数据清洗阶段,通过删除含有缺失值的记录进行预处理。接着,使用TensorFlow构建了一个多层神经网络模型进行训练,最后将模型部署到TensorFlow Serving上,供后续服务使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本笔记本介绍了从数据清洗、模型训练到模型部署的一套完整流程,并且提供了一套基本的误差补偿模型。根据指令对本笔记本中的相应代码区域进行修改并执行,即可生成并且部署一套误差补偿服务。同学们需要根据实际的数据情况,对模型进行调优。

预处理

我们的误差补偿数据存放在adjustments.tsv中。

首先,我们查看adjustments.tsv的内容:

In [59]:

import numpy as np

import pandas as pd

raw_dataset = pd.read_csv('./adjustment.tsv',                                               

                          sep='\t',

                          skipinitialspace=True)

np.set_printoptions(precision=3, suppress=True)

dataset = raw_dataset.copy()

dataset.head()

Out[59]:

特征0

特征1

特征2

特征3

特征4

特征5

特征6

特征7

特征8

特征9

...

特征16

特征17

补偿0

补偿1

补偿2

补偿3

补偿4

补偿5

补偿6

补偿7

0

7.4

0.048

1.19

1.47

0.23

0.54

0.27

5.75

0.65

0.71

...

0.07

0.62

1.23

0.88

0.73

0.19

1.67

0.36

1.58

1.62

1

3.7

NaN

1.87

0.18

0.94

0.70

0.07

5.20

0.73

0.59

...

0.91

0.89

0.99

1.11

0.13

0.18

1.33

0.86

1.22

1.30

2

1.2

0.046

1.97

1.17

0.67

0.89

0.60

2.10

0.97

0.14

...

0.80

0.69

1.85

0.13

1.54

1.91

0.63

0.70

1.71

1.57

3

7.2

0.053

1.17

2.13

0.82

0.18

0.17

5.30

0.27

0.46

...

0.37

0.37

1.72

0.58

1.03

1.77

0.86

1.65

1.95

1.37

4

1.8

0.021

1.89

0.42

0.20

0.92

0.80

1.60

0.20

0.70

...

0.50

0.68

0.83

0.09

0.94

0.49

1.87

1.21

1.53

1.56

5 rows × 26 columns

可以看出,adjustments.tsv文件的前18列为特征值,这些值代表着真实世界中影响机床的环境因素,例如刀具磨

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值