MambaAD: Exploring State Space Models for Multi-class Unsupervised Anomaly Detectionz分析

Recent advancements in anomaly detection have seen the efficacy of CNN- and transformer-based approaches. However, CNNs struggle with long-range dependencies, while transformers are burdened by quadratic computational complexity.

研究进展:

  • 基于 CNN 和基于 Transformer 的方法: 是有效的。
  • 进一步讲 CNN 和 Transformer 方法的缺陷:
    • CNN: 不好处理远程依赖。
    • Transformer: 二次计算复杂度。

Mamba-based models, with their superior long-range modeling and linear efficiency, have garnered substantial attention.
提到新模型:基于 Mamba 的模型

  • 优点: 卓越的远程建模 + 线性效率

This study pioneers the application of Mamba to multi-class unsupervised anomaly detection, presenting MambaAD, which consists of a pre-trained encoder and a Mamba decoder featuring (Locality-Enhanced State Space) LSS modules at multi-scales. The proposed LSS module, integrating parallel cascaded (Hybrid State Space) HSS blocks and multi-kernel convolutions operations, effectively captures both long-range and local information. The HSS block, utilizing (Hybrid Scanning) HS encoders, encodes feature maps into five scanning methods and eight directions, thereby strengthening global connections through the (State Space Model) SSM.
论文工作:

  • 创新点: Mamba 应用 多类无监督异常检测
  • MambaAD:
    • 预训练的编码器
    • 具有(局部增强状态空间)LSS 模块
      • 并行级联(混合状态空间)HSS 块
        • 做的: HSS 块利用(混合扫描)HS 编码器
        • 结果: 将特征映射编码为5种扫描方法和8个方向
        • 功能: 通过(状态空间模型)SSM加强全局连接
      • 多核卷积操作
        • 功能: 有效地捕获远程和本地信息
    • Mamba 解码器

组成多尺度

The use of Hilbert scanning and eight directions significantly improves feature sequence modeling.
Hilbert:

  • 做到: 扫描和使用八个方向
  • 效果: 显着提高了特征序列建模

Comprehensive experiments on six diverse anomaly detection datasets and seven metrics demonstrate state-of-the-art performance, substantiating the method’s effectiveness.
验证方法有效性:

  • 对六种不同的异常检测数据集 + 七个指标的综合实验
  • 结果: 证实了该方法的有效性

The code and models are available at
代码和模型可在
https://lewandofskee.github.io/projects/MambaAD

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值