Leetcode53. 最大子数组和 -hot100-代码随想录-codeTop

本文介绍了如何通过C++实现一个名为`maxSubArray`的函数,利用动态规划方法求解给定整数数组中的最大子数组和。从基础遍历到递推公式,逐步展示了三次尝试的不同理解和实现方式。
摘要由CSDN通过智能技术生成

目录

题目:

代码(首刷看解析 2024年2月9日):

代码(二刷看解析 2024年2月29日)

代码(三刷自解 2024年3月3日)

代码(四刷看解析 贪心 2024年6月4日 go)

代码(五刷看解析 贪心 2024年7月26日)



题目:


代码(首刷看解析 2024年2月9日):

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int res = INT_MIN;
        int count = 0;
        for (int i = 0; i < nums.size(); ++i) {
            count += nums[i];
            res = max(res,count);
            if (count < 0) count = 0;
        }
        return res;
    }
};

代码(二刷看解析 2024年2月29日)

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int n = nums.size();
        // dp
        if (n == 1) return nums[0];
        vector<int> dp(n);
        // 左到右
        dp[0] = nums[0];
        int res = nums[0];
        for (int i = 1; i < n; ++i) {
            dp[i] = max(dp[i - 1] + nums[i], nums[i]);
            res = max(dp[i], res);
        }
        return res;
    }
};

代码(三刷自解 2024年3月3日)

        关键是要想得到用DP

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        // dp[i]表示前i的最大子数组 todo:dp[0]
        vector<int> dp(nums.size(), INT_MIN);
        dp[0] = nums[0];
        int res = dp[0];
        for (int i = 1; i < nums.size(); ++i) {
            dp[i] = max(dp[i - 1] + nums[i], nums[i]);
            res = max(res, dp[i]);
        }
        return res;
        // 递推公式:dp[i] = max(dp[i - 1] + nums[i], nums[i]);
    }
};

代码(四刷看解析 贪心 2024年6月4日 go)

// 子数组是连续
// 贪心的思路: 局部最优解是,每次新加入的值都是正数,以避免拖累总和;如果是负数,就应该立刻舍弃,从新值开始算
func maxSubArray(nums []int) int {
    res := nums[0]
    tempSum := 0

    for i := 0; i < len(nums); i++ {
        tempSum += nums[i]
        if tempSum > res {
            res = tempSum
        }
        // 若当前tempSum小于0,则会拖累后续的子序列,则直接重置为0
        if tempSum < 0 {
            tempSum = 0
        }
    }
    return res
}

代码(五刷看解析 贪心 2024年7月26日)

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        // 局部最优:所有数都是正数
        int res = nums[0];
        int temp = 0;
        for (int i = 0; i < nums.size(); i++) {
            temp += nums[i];
            res = max(temp, res);
            if (temp < 0) temp = 0;
        }
        return res;
    }
};

代码(六刷自解 2024年9月18日 动态规划)

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        vector<int> dp(nums.size());
        // dp[i] = dp[i - 1] + nums[i] dp[i - 1] > 0
        dp[0] = nums[0];
        int res = nums[0];
        for (int i = 1; i < nums.size(); i++) {
            if (dp[i - 1] > 0) {
                dp[i] = dp[i - 1] + nums[i];
            } else {
                dp[i] = nums[i];
            }
            res = max(res, dp[i]);
        }
        return res;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值