数据挖掘-k-means算法(利用python代码实现)

KMeans 聚类算法是一种基于距离的聚类算法,用于将数据点分成若干组。在 Python 中,可以使用 scikit-learn 库中的 KMeans 函数来实现 KMeans 聚类算法。
下面是一些简单的k-means聚类实现代码

from sklearn.cluster import KMeans
import numpy as np
 
# 模拟数据
X = np.array([[1, 2], [1, 4], [1, 0], [4, 2], [4, 4], [4, 0]])
 
# 创建 KMeans 模型,并将数据聚类为两组
kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
 
# 获取聚类结果
labels = kmeans.labels_
 
# 获取聚类中心
cluster_centers = kmeans.cluster_centers_
 
print("聚类结果:", labels)
print("聚类中心:", cluster_centers)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不会射门的18号

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值