鬼吹灯之龙岭迷窟
Description
在古希腊时期,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数学的方式表达出来。
这个比例就叫做黄金分割比,它是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,
其比值约为0.6180339887。这个比例被公认为是最能引起美感的比例,因此被称为黄金分割。
现在小玉有一个正整数数列,这个数列的前一项和后一项的比值十分趋近于黄金分割比,即(a[i])/(a[i+1])~ 0.6180339887,(i>=1),
可是她只知道数列的第一项是5,现在她想通过已有条件推断出数列的任意项,请你帮助她编写一个程序计算。
Input
输入一个整数n(1<=n<=20)。
Output
输出一个数,代表这个数列的第n项a[n]。
Sample
Input
1
Output
5
作为递推题目,比较容易想出此题会有较为类似递推方法(如同斐波那契数列1,1,2,3,5,8,13…)
因此列出前3项
a[0]=5;
a[1]=8;
a[2]=13;
再多算几位是可以发现规律的,因此利用递推方法做。
#include<stdio.h>
int a[25];
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
if(i==1)
a[i]=5;
else if(i==2)
a[i]=8;
else
a[i]=a[i-1]+a[i-2];
}
printf("%d",a[n]);
}
对于此题如果并没有看出为递推题目,可以根据题意完成本题目,即(a[i])/(a[i+1])~ 0.6180339887,(i>=1),可知,前一项比后一项为小数,而所求序列四舍五入为整数序列。
#include<stdio.h>
int a[25];
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
if(i==1)
a[i]=5;
else
a[i] = ((a[i-1]/0.6180339887)+0.5);//整数四舍五入操作
}
printf("%d",a[n]);
}
对于a数组,作为正数数组,会将小数部分全部省去,而作为本题,要求准确需要四舍五入,对于小数部分如果加0.5后大于1,证明原来小数部分大于0.5,反之小于0.5
对于四舍五入的具体操作在本专栏里有有较为详细的讲解。