AcWing 859. Kruskal算法求最小生成树 (自己改进版的最优prim和kruskal)

https://www.acwing.com/problem/content/description/861/

在这里插入图片描述
这题目要求用kruskal算法找最小生成树,但是我学了prim算法后,以及dijkstra的改进空间,我自己写了一个最优版的prim去试试水,结果险些AC代码如下,其实和dijkstra最优版本的改进有异曲同工之妙的,看一下我之前的博文(dijkstra1,2,以及prim)其实他们很像,我用优先队列去保存这些节点。
这是我自己改进的最优prim

#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;

const int N=1e5+10,M=2e5+10,Inf=0x3f3f3f3f;

typedef pair<int,int> PII;

int ne[M*2],h[N],e[M*2],w[M*2],idx;
int n,m;
int dist[N];
bool st[N];

void add(int a,int b,int c)
{
    e[idx]=b;w[idx]=c;ne[idx]=h[a];h[a]=idx++;
}

int prim()
{
    priority_queue<PII,vector<PII>,greater<PII>> heap;
    int res=0,cnt=0;
    memset(dist,0x3f,sizeof dist);
    heap.push({0,1});
    while(heap.size())
    {
        auto t=heap.top();
        heap.pop();
        int ver=t.second,distance=t.first;
        if(st[ver]) continue;
        st[ver]=true;
        res+=distance,cnt++;
        if(cnt==n)
        break;
        for(int i=h[ver];i!=-1;i=ne[i])
        {
            int j=e[i];
            dist[j]=min(dist[j],w[i]);
            heap.push({dist[j],j});
        }
    }
    if(cnt==n)
    return res;
    else
    return Inf;
}

int main(void)
{
    scanf("%d%d",&n,&m);
    memset(h,-1,sizeof h);
    for(int i=1;i<=m;i++)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c);
        add(b,a,c);
    }
    
    int t=prim();
    if(t==Inf) puts("impossible");
    else
    cout<<t;
    
}

但是从y总了解到kruskal的原理之后(非常明显的贪心),求加权最小的边,然后把两个没有连上的集合进行连接,这个思路我也没想到,(说不定以及达到了最好的方法)然后怎么确定二者在一个集合呢,这个很简单,我们之前学过并查集的,所以我们用并查集的方法保存几个点在同一个集合。
思路真的简单的不能再简单了,就如同y总所说,太尼玛简单了。
代码如下

#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

const int N=1e5+10,M=2e5+10;

struct edge
{
    int a,b,w;
} Edge[M];
int ph[N];
int n,m;

int find(int t)
{
    if(ph[t]!=t) return ph[t]=find(ph[t]);
    return t;
}

bool cmp(edge a,edge b)
{
    return a.w<b.w;
}
int main(void)
{
    scanf("%d%d",&n,&m);
    for(int i=0;i<m;i++)
    {
        int a,b,w;
        scanf("%d%d%d",&a,&b,&w);
        Edge[i]={a,b,w};
    }
    
    sort(Edge,Edge+m,cmp);
    int cnt=0,res=0;
    for(int i=1;i<=n;i++) ph[i]=i;
    for(int i=0;i<m;i++)
    {
        int a=Edge[i].a,b=Edge[i].b,w=Edge[i].w;
        a=find(a);b=find(b);
        if(a!=b)
        {
            ph[a]=b;
            res+=w;
            cnt++;
        }
    }
    if(cnt==n-1) cout<<res;
    else
    puts("impossible");
}

我之前我觉得我都版本是最优的,后来发现运行时间,我也是有一点点懵逼。
在这里插入图片描述
在前三次的WA下,第四次终于WA了,但是运行时间差距还是不小,还是kruskal算法明显更优一点,尽量使用kruskal算法,比较简单。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值