https://www.acwing.com/problem/content/description/861/
这题目要求用kruskal算法找最小生成树,但是我学了prim算法后,以及dijkstra的改进空间,我自己写了一个最优版的prim去试试水,结果险些AC代码如下,其实和dijkstra最优版本的改进有异曲同工之妙的,看一下我之前的博文(dijkstra1,2,以及prim)其实他们很像,我用优先队列去保存这些节点。
这是我自己改进的最优prim
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int N=1e5+10,M=2e5+10,Inf=0x3f3f3f3f;
typedef pair<int,int> PII;
int ne[M*2],h[N],e[M*2],w[M*2],idx;
int n,m;
int dist[N];
bool st[N];
void add(int a,int b,int c)
{
e[idx]=b;w[idx]=c;ne[idx]=h[a];h[a]=idx++;
}
int prim()
{
priority_queue<PII,vector<PII>,greater<PII>> heap;
int res=0,cnt=0;
memset(dist,0x3f,sizeof dist);
heap.push({0,1});
while(heap.size())
{
auto t=heap.top();
heap.pop();
int ver=t.second,distance=t.first;
if(st[ver]) continue;
st[ver]=true;
res+=distance,cnt++;
if(cnt==n)
break;
for(int i=h[ver];i!=-1;i=ne[i])
{
int j=e[i];
dist[j]=min(dist[j],w[i]);
heap.push({dist[j],j});
}
}
if(cnt==n)
return res;
else
return Inf;
}
int main(void)
{
scanf("%d%d",&n,&m);
memset(h,-1,sizeof h);
for(int i=1;i<=m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
add(b,a,c);
}
int t=prim();
if(t==Inf) puts("impossible");
else
cout<<t;
}
但是从y总了解到kruskal的原理之后(非常明显的贪心),求加权最小的边,然后把两个没有连上的集合进行连接,这个思路我也没想到,(说不定以及达到了最好的方法)然后怎么确定二者在一个集合呢,这个很简单,我们之前学过并查集的,所以我们用并查集的方法保存几个点在同一个集合。
思路真的简单的不能再简单了,就如同y总所说,太尼玛简单了。
代码如下
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e5+10,M=2e5+10;
struct edge
{
int a,b,w;
} Edge[M];
int ph[N];
int n,m;
int find(int t)
{
if(ph[t]!=t) return ph[t]=find(ph[t]);
return t;
}
bool cmp(edge a,edge b)
{
return a.w<b.w;
}
int main(void)
{
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++)
{
int a,b,w;
scanf("%d%d%d",&a,&b,&w);
Edge[i]={a,b,w};
}
sort(Edge,Edge+m,cmp);
int cnt=0,res=0;
for(int i=1;i<=n;i++) ph[i]=i;
for(int i=0;i<m;i++)
{
int a=Edge[i].a,b=Edge[i].b,w=Edge[i].w;
a=find(a);b=find(b);
if(a!=b)
{
ph[a]=b;
res+=w;
cnt++;
}
}
if(cnt==n-1) cout<<res;
else
puts("impossible");
}
我之前我觉得我都版本是最优的,后来发现运行时间,我也是有一点点懵逼。
在前三次的WA下,第四次终于WA了,但是运行时间差距还是不小,还是kruskal算法明显更优一点,尽量使用kruskal算法,比较简单。