AcWing 1018. 最低通行费
一个商人穿过一个N×N的正方形的网格,去参加一个非常重要的商务活动。
他要从网格的左上角进,右下角出。
每穿越中间1个小方格,都要花费1个单位时间。
商人必须在(2N-1)个单位时间穿越出去。
而在经过中间的每个小方格时,都需要缴纳一定的费用。
这个商人期望在规定时间内用最少费用穿越出去。
请问至少需要多少费用?
注意:不能对角穿越各个小方格(即,只能向上下左右四个方向移动且不能离开网格)。
输入格式
第一行是一个整数,表示正方形的宽度N。
后面N行,每行N个不大于100的整数,为网格上每个小方格的费用。
输出格式
输出一个整数,表示至少需要的费用。
数据范围
1≤N≤100
输入样例:
5
1 4 6 8 10
2 5 7 15 17
6 8 9 18 20
10 11 12 19 21
20 23 25 29 33
输出样例:
109
样例解释
样例中,最小值为109=1+2+5+7+9+12+19+21+33。
我刚开始就没分析就开始写代码了,其实我用的是三维数组,
d
p
[
i
]
[
j
]
[
k
]
dp[i][j][k]
dp[i][j][k]表示坐标i,j走k次
状态方程为
d
p
[
i
]
[
j
]
[
k
]
dp[i][j][k]
dp[i][j][k]=
m
i
n
(
m
i
n
(
d
p
[
i
−
1
]
[
j
]
[
k
−
1
]
,
d
p
[
i
]
[
j
−
1
]
[
k
−
1
]
)
,
min(min(dp[i-1][j][k-1],dp[i][j-1][k-1]),
min(min(dp[i−1][j][k−1],dp[i][j−1][k−1]),
m
i
n
(
d
p
[
i
+
1
]
[
j
]
[
k
−
1
]
,
d
p
[
i
]
[
j
+
1
]
[
k
−
1
]
)
min(dp[i+1][j][k-1],dp[i][j+1][k-1])
min(dp[i+1][j][k−1],dp[i][j+1][k−1]))
+
g
[
i
]
[
j
]
+g[i][j]
+g[i][j]
然后这个过了4个样例,可能有负数导致出现错误,其实我们发现只能走2*n-1次,
我们完全只能向右或向左
最终代码如下:
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=110;
int dp[N][N],g[N][N];
int main(void)
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&g[i][j]);
memset(dp,0x3f,sizeof dp);
dp[1][1]=g[1][1];
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i==1&&j==1)
continue;
else
{
dp[i][j]=min(dp[i-1][j],dp[i][j-1])+g[i][j];
}
cout<<dp[n][n]<<endl;
}