AcWing 1018. 最低通行费 简单dp

AcWing 1018. 最低通行费
一个商人穿过一个N×N的正方形的网格,去参加一个非常重要的商务活动。

他要从网格的左上角进,右下角出。

每穿越中间1个小方格,都要花费1个单位时间。

商人必须在(2N-1)个单位时间穿越出去。

而在经过中间的每个小方格时,都需要缴纳一定的费用。

这个商人期望在规定时间内用最少费用穿越出去。

请问至少需要多少费用?

注意:不能对角穿越各个小方格(即,只能向上下左右四个方向移动且不能离开网格)。

输入格式
第一行是一个整数,表示正方形的宽度N。

后面N行,每行N个不大于100的整数,为网格上每个小方格的费用。

输出格式
输出一个整数,表示至少需要的费用。

数据范围
1≤N≤100
输入样例:
5
1 4 6 8 10
2 5 7 15 17
6 8 9 18 20
10 11 12 19 21
20 23 25 29 33
输出样例:
109
样例解释
样例中,最小值为109=1+2+5+7+9+12+19+21+33。

我刚开始就没分析就开始写代码了,其实我用的是三维数组,
d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k]表示坐标i,j走k次
状态方程为
d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k]= m i n ( m i n ( d p [ i − 1 ] [ j ] [ k − 1 ] , d p [ i ] [ j − 1 ] [ k − 1 ] ) , min(min(dp[i-1][j][k-1],dp[i][j-1][k-1]), min(min(dp[i1][j][k1],dp[i][j1][k1]), m i n ( d p [ i + 1 ] [ j ] [ k − 1 ] , d p [ i ] [ j + 1 ] [ k − 1 ] ) min(dp[i+1][j][k-1],dp[i][j+1][k-1]) min(dp[i+1][j][k1],dp[i][j+1][k1])) + g [ i ] [ j ] +g[i][j] +g[i][j]
然后这个过了4个样例,可能有负数导致出现错误,其实我们发现只能走2*n-1次,
我们完全只能向右或向左
最终代码如下:

#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

const int N=110;

int dp[N][N],g[N][N];

int main(void)
{
    int n;
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
     for(int j=1;j<=n;j++)
      scanf("%d",&g[i][j]);
    memset(dp,0x3f,sizeof dp);
    dp[1][1]=g[1][1];
    for(int i=1;i<=n;i++)
     for(int j=1;j<=n;j++)
       if(i==1&&j==1)
       continue;
       else
       {
        dp[i][j]=min(dp[i-1][j],dp[i][j-1])+g[i][j];         
       }
    cout<<dp[n][n]<<endl;
    
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值