金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。
更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。
今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
QQ截图20190313024710.png
如果要买归类为附件的物品,必须先买该附件所属的主件。
每个主件可以有0个、1个或2个附件。
附件不再有从属于自己的附件。
金明想买的东西很多,肯定会超过妈妈限定的N元。
于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。
他还从因特网上查到了每件物品的价格(都是10元的整数倍)。
他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,…,jk,则所求的总和为:
v[j1]∗w[j1]+v[j2]∗w[j2]+…+v[jk]∗w[jk](其中*为乘号)
请你帮助金明设计一个满足要求的购物单。
输入格式
输入文件的第1行,为两个正整数,用一个空格隔开:N m,其中N表示总钱数,m为希望购买物品的个数。
从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有3个非负整数v p q,其中v表示该物品的价格,p表示该物品的重要度(1~5),q表示该物品是主件还是附件。
如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号。
输出格式
输出文件只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000)。
数据范围
N<32000,m<60,v<10000
输入样例:
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
输出样例:
2200
难度: 中等
时/空限制: 1s / 128MB
总通过数: 1915
总尝试数: 3579
来源: NOIP2006提高组
算法标签
这道题的题意是,有一堆主要的和附要的,我们只有先选主要的才能选次要的,这就形成了分组背包问题,不过一个分组有2^size (主要的以及主要的附件的数量和),然后这是一组背包,然后转化为01 背包问题。
我们把主要的数量当作分组的数量,然后一个分组里面有size(主要以及主要的附件的数量和),然后把每个情况枚举一遍(状态压缩)然后我们开始进行一个01背包问题的变形,最后我们选出最优的方案输出f[M]。
代码如下:
#include<iostream>
#include<algorithm>
using namespace std;
typedef pair<int,int> PII;
const int N=32000,M=70;
int f[N];
PII master[M];
vector<PII> addition[M];
int n,m;
int main(void)
{
cin>>m>>n;
for(int i=1;i<=n;i++)
{
int v,w,q;
cin>>v>>w>>q;
if(!q) master[i]={v,w*v};
else addition[q].push_back({v,v*w});
}
for(int i=1;i<=n;i++)
if(master[i].first)
{
vector<PII> &ad=addition[i];
for(int j=m;j>=1;j--)
{
for(int u=0;u<(1<<ad.size());u++)
{
int v=master[i].first,w=master[i].second;
for(int k=0;k<ad.size();k++)
if((u>>k)&1)
{
v+=ad[k].first;
w+=ad[k].second;
}
if(j>=v) f[j]=max(f[j],f[j-v]+w);
}
}
}
cout<<f[m];
}