前前排先说一下:写完的东西一定记得保存!要不网页一关就啥都没了💔💔💔
协同过滤是一种推荐算法,它和传统的内容过滤不同;传统过滤方法可能会存在误差(比如把用户感兴趣的内容滤掉或者推荐给用户不喜欢的内容)。
协同过滤不仅通过分析用户的喜好(点击量、浏览页面),还可以扩大范围网,通过计算与该用户喜好相同的用户所喜欢的内容,通过后台计算,并把结果反馈给用户。
协同过滤的优点之一是它甚至可以代替用户直接给系统做出反馈,使操作更加智能化。
其中,协同过滤算法主要分为基于启发式和基于模型式两种。
而基于启发式的协同过滤算法,又可以分为基于用户的协同过滤算法和基于项目的协同过滤算法,这里主要讲基于用户的协同过滤算法
基于用户的协同过滤
因为这种计算总是和“邻居”相关,所以它又叫基于邻居的协同过滤。
1.1 方法步骤:
① 搜集用户信息,列出相关表格/矩阵。
② 按要求查找候选邻居,计算相似度。
③ 计算预测分值。
光看这三个步骤,估计也看不太明白,下边来细说一下。
第一条就不多说了,就是简单的信息搜查和信息规整,记得表格做的美观简明就ok。
第二条,候选邻居应该可以通过题目要求找到。(通俗的讲就是和你要预测的这个商品相关的用户,假设想预测你对商品A的期待值,